Graphene wettability control: Texturing of the substrate and removal of airborne contaminants in the atmosphere of various gases

被引:24
作者
Misyura, S. Y. [1 ]
Andryushchenko, V. A. [1 ]
Smovzh, D., V [1 ]
Morozov, V. S. [1 ]
机构
[1] Russian Acad Sci, Kutateladze Inst Themophys, Siberian Branch, 1 Lavrentyev Ave, Novosibirsk 630090, Russia
关键词
Graphene; Surface structures; Crystallographic orientation; Wettability; HIGH-QUALITY; WATER; DESALINATION; CHARMM; LAYER;
D O I
10.1016/j.molliq.2021.118116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental and theoretical studies on the wettability of graphene coating are carried out. Molecular dynamic modeling is used to structure water molecules on the surface of copper and graphene-copper, as well as to assess wettability. The instability of the properties of graphene coatings over time is one of the reasons that inhibit their widespread use as highly sensitive sensors. The adsorption of water vapor and airborne contaminations on the graphene surface leads to a change in the electrical properties of the coating. The influence of key parameters (copper recrystallization, copper oxidation due to graphene surface defects, wall textures and airborne contaminations) on the wettability of the graphene coating is investigated for the first time. It is shown that the predominant effect on the change in wettability is exerted by hydrocarbon impurities. Molecular dynamic modeling demonstrates that an insignificant local separation of copper, as well as an inhomogeneous graphene coating, increases the angle on the graphene coating from 25 to 30 degrees to 60-65 degrees. To remove the hydrocarbon layer, annealing is carried out in a wide temperature range, as well as in the atmosphere of argon and hydrogen. A comparison of various methods of removing impurities is carried out. After prolonged annealing, the contact angle of the drop decreases from 80 to 90 degrees to 55 degrees. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 47 条
  • [1] Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
  • [2] Recent advances in utilization of graphene for filtration and desalination of water: A review
    Aghigh, Arash
    Alizadeh, Vahid
    Wong, H. Y.
    Islam, Md. Shabiul
    Amin, Nowshad
    Zaman, Mukter
    [J]. DESALINATION, 2015, 365 : 389 - 397
  • [3] Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
    Akbari, Abozar
    Sheath, Phillip
    Martin, Samuel T.
    Shinde, Dhanraj B.
    Shaibani, Mahdokht
    Banerjee, Parama Chakraborty
    Tkacz, Rachel
    Bhattacharyya, Dibakar
    Majumder, Mainak
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [4] Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
    Bonaccorso, Francesco
    Colombo, Luigi
    Yu, Guihua
    Stoller, Meryl
    Tozzini, Valentina
    Ferrari, Andrea C.
    Ruoff, Rodney S.
    Pellegrini, Vittorio
    [J]. SCIENCE, 2015, 347 (6217)
  • [5] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride
    Dauber, Jan
    Sagade, Abhay A.
    Oellers, Martin
    Watanabe, Kenji
    Taniguchi, Takashi
    Neumaier, Daniel
    Stampfer, Christoph
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (19)
  • [8] THE NOSE-HOOVER THERMOSTAT
    EVANS, DJ
    HOLIAN, BL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) : 4069 - 4074
  • [9] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [10] Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity
    Harrach, Michael F.
    Drossel, Barbara
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (17)