Study on Force Schemes in Pseudopotential Lattice Boltzmann Model for Two-Phase Flows

被引:15
|
作者
Peng, Yong [1 ]
Wang, Bo [1 ]
Mao, Yunfei [1 ]
机构
[1] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
SIMULATION; STATE;
D O I
10.1155/2018/6496379
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multiphase flows are very important in industrial application. In present study, the force schemes in the pseudopotential LBM for two-phase flows have been compared in detail and the force schemes include Shan-Chen, EDM, MED, and Guo's schemes. Numerical simulations confirm that all four schemes are consistent with the Laplace law. For Shan-Chen scheme, the smaller.. is, the smaller the surface tension is. However, for other schemes, tau has no effect on surface tension. When 0.6 < tau <= 1, the achieved density ratio will reduce as tau reduces. During this range of tau, the maximum density ratio of EDM scheme will be greater than that of other schemes. For a constant T, the curves of the maximum spurious currents (u') has a minimum value which is corresponding to tau' except for EDM schemes. In the region of tau' < tau <= 1, u' will reduce as tau decreases. On the other hand, in the area of tau <= tau', u' will increase as tau decreases. However, for EDM scheme, u' will increase as tau increases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Force imbalance in lattice Boltzmann equation for two-phase flows
    Guo, Zhaoli
    Zheng, Chuguang
    Shi, Baochang
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [2] Interface-capturing lattice Boltzmann equation model for two-phase flows
    Lou, Qin
    Guo, Zhaoli
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [3] Effects of force discretization on mass conservation in lattice Boltzmann equation for two-phase flows
    Lou, Q.
    Guo, Z. L.
    Shi, B. C.
    EPL, 2012, 99 (06)
  • [4] Examining a Conservative Phase-Field Lattice Boltzmann Model for Two-Phase Flows
    Li, Wende
    Sun, Chenghai
    Dressler, Marco
    Otomo, Hiroshi
    Li, Yanbing
    Zhang, Raoyang
    AIAA JOURNAL, 2024, : 198 - 207
  • [5] Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow
    Qin, Feifei
    Moqaddam, Ali Mazloomi
    Kang, Qinjun
    Derome, Dominique
    Carmeliet, Jan
    PHYSICS OF FLUIDS, 2018, 30 (03)
  • [6] Phase-field lattice Boltzmann model for two-phase flows with large density ratio
    Zhang, Shengyuan
    Tang, Jun
    Wu, Huiying
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [7] Performance portability of lattice Boltzmann methods for two-phase flows with phase change
    Verdier, Werner
    Kestener, Pierre
    Cartalade, Alain
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370
  • [8] Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows
    Li, Q.
    Luo, K. H.
    Li, X. J.
    PHYSICAL REVIEW E, 2012, 86 (01)
  • [9] Validation of an improved lattice Boltzmann method for incompressible two-phase flows
    Inamuro, Takaji
    Echizen, Takuya
    Horai, Fuminori
    COMPUTERS & FLUIDS, 2018, 175 : 83 - 90
  • [10] A filtered cumulant lattice Boltzmann method for violent two-phase flows
    Sitompul, Yos Panagaman
    Aoki, Takayuki
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 390 : 93 - 120