Superoxide radical formation by pure complex I (NADH:Ubiquinone oxidoreductase) from Yarrowia lipolytica

被引:133
作者
Galkin, A [1 ]
Brandt, U [1 ]
机构
[1] Goethe Univ Frankfurt, Zentrum Biol Chem, Fac Med, D-60590 Frankfurt, Germany
关键词
D O I
10.1074/jbc.M504709200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.
引用
收藏
页码:30129 / 30135
页数:7
相关论文
共 57 条
[1]   Function of conserved acidic residues in the PSST homologue of complex I (NADH:Ubiquinone oxidoreductase) from Yarrowia lipolytica [J].
Ahlers, PM ;
Zwicker, K ;
Kerscher, S ;
Brandt, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23577-23582
[2]   DIRECT DEMONSTRATION OF SUPEROXIDE ANION PRODUCTION DURING OXIDATION OF REDUCED FLAVIN AND OF ITS CATALYTIC DECOMPOSITION BY ERYTHROCUPREIN [J].
BALLOU, D ;
PALMER, G ;
MASSEY, V .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1969, 36 (06) :898-&
[3]   ACID DISSOCIATION CONSTANT AND DECAY KINETICS OF PERHYDROXYL RADICAL [J].
BEHAR, D ;
CZAPSKI, G ;
RABANI, J ;
DORFMAN, LM ;
SCHWARZ, HA .
JOURNAL OF PHYSICAL CHEMISTRY, 1970, 74 (17) :3209-&
[4]   A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) [J].
Böttcher, B ;
Scheide, D ;
Hesterberg, M ;
Nagel-Steger, L ;
Friedrich, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17970-17977
[5]   MITOCHONDRIAL PRODUCTION OF SUPEROXIDE ANIONS AND ITS RELATIONSHIP TO ANTIMYCIN INSENSITIVE RESPIRATION [J].
BOVERIS, A ;
CADENAS, E .
FEBS LETTERS, 1975, 54 (03) :311-314
[6]  
BOVERIS A, 1984, METHOD ENZYMOL, V105, P429
[7]   Proton pumping by NADH:ubiquinone oxidoreductase.: A redox driven conformational change mechanism? [J].
Brandt, U ;
Kerscher, S ;
Dröse, S ;
Zwicker, K ;
Zickermann, V .
FEBS LETTERS, 2003, 545 (01) :9-17
[8]   USING LIPOATE ENANTIOMERS AND THIOREDOXIN TO STUDY THE MECHANISM OF THE 2-OXOACID-DEPENDENT DIHYDROLIPOATE PRODUCTION BY THE 2-OXOACID DEHYDROGENASE COMPLEXES [J].
BUNIK, V ;
SHOUBNIKOVA, A ;
LOEFFELHARDT, S ;
BISSWANGER, H ;
BORBE, HO ;
FOLLMANN, H .
FEBS LETTERS, 1995, 371 (02) :167-170
[9]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[10]   Full recovery of the NADH:ubiquinone activity of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica by the addition of phospholipids [J].
Dröse, S ;
Zwicker, K ;
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1556 (01) :65-72