Neural Network-Based State of Charge Observer Design for Lithium-Ion Batteries

被引:173
作者
Chen, Jian [1 ]
Ouyang, Quan [1 ]
Xu, Chenfeng [1 ]
Su, Hongye [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Equivalent circuit model; lithium-ion battery; neural network-based nonlinear observer; state of charge (SOC); MODEL-BASED STATE; OF-CHARGE; NONLINEAR-SYSTEMS;
D O I
10.1109/TCST.2017.2664726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method for the state of charge (SOC) estimation of lithium-ion batteries is proposed based on an inclusive equivalent circuit model in this brief. In particular, we propose to utilize the neural network to estimate the uncertainties in the battery model online. A radial basis function neural network-based nonlinear observer is then designed to estimate the battery's SOC. Following Lyapunov stability analysis, it is proved that the SOC estimation error is ultimately bounded and the error bound can be arbitrarily small. Experimental and simulation results illustrate the performance of the proposed approach. Furthermore, we compare the SOC estimation results of the extended Kalman filter with the proposed radial basis function neural network-based nonlinear observer. The proposed approach has faster convergence speed and higher precision.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 34 条
[1]   Rapid test and non-linear model characterisation of solid-state lithium-ion batteries [J].
Abu-Sharkh, S ;
Doerffel, D .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :266-274
[2]   Moving-Horizon State Estimation for Nonlinear Systems Using Neural Networks [J].
Alessandri, Angelo ;
Baglietto, Marco ;
Battistelli, Giorgio ;
Gaggero, Mauro .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (05) :768-780
[3]  
[Anonymous], 2010, Battery Management Systems for Large Lithium Ion Battery Packs
[4]   Energy gauge for lead-acid batteries in electric vehicles [J].
Caumont, O ;
Le Moigne, P ;
Rombaut, C ;
Muneret, X ;
Lenain, P .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2000, 15 (03) :354-360
[5]   A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system [J].
Chau, KT ;
Wu, KC ;
Chan, CC .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (11-12) :1681-1692
[6]   Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form [J].
Chen, Bing ;
Zhang, Huaguang ;
Lin, Chong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) :89-98
[7]   Accurate electrical battery model capable of predicting, runtime and I-V performance [J].
Chen, Min ;
Rincon-Mora, Gabriel A. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (02) :504-511
[8]   Robust Adaptive Position Mooring Control for Marine Vessels [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee ;
Choo, Yoo Sang .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (02) :395-409
[9]   Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles [J].
Chen, Xiaopeng ;
Shen, Weixiang ;
Dai, Mingxiang ;
Cao, Zhenwei ;
Jin, Jiong ;
Kapoor, Ajay .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (04) :1936-1947
[10]   State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering [J].
Chen, Zheng ;
Fu, Yuhong ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (03) :1020-1030