The character map in deformation quantization

被引:8
|
作者
Cattaneo, Alberto S. [2 ]
Felder, Giovanni [1 ]
Willwacher, Thomas [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Deformation quantization; Cyclic homology; Gauss-Manin connection; FORMALITY;
D O I
10.1016/j.aim.2011.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The third author recently proved that the Shoikhet-Dolgushev L-infinity-morphism from Hochschild chains of the algebra of smooth functions on a manifold to differential forms extends to cyclic chains. Localization at a solution of the Maurer-Cartan equation gives an isomorphism, which we call character map, from the periodic cyclic homology of a formal associative deformation of the algebra of functions to de Rham cohomology. We prove that the character map is compatible with the Gauss-Manin connection, extending a result of Calaque and Rossi on the compatibility with the cap product. As a consequence, the image of the periodic cyclic cycle 1 is independent of the deformation parameter and we compute it to be the A-roof genus of the manifold. Our results also imply the Tamarkin-Tsygan index theorem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1966 / 1989
页数:24
相关论文
共 50 条
  • [11] Morita theory in deformation quantization
    Stefan Waldmann
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 831 - 852
  • [12] Deformation quantization and Nambu Mechanics
    G. Dito
    M. Flato
    D. Sternheimer
    L. Takhtajan
    Communications in Mathematical Physics, 1997, 183 : 1 - 22
  • [13] Deformation Quantization of Algebraic Varieties
    Maxim Kontsevich
    Letters in Mathematical Physics, 2001, 56 : 271 - 294
  • [14] Deformation quantization with generators and relations
    Calaque, Damien
    Felder, Giovanni
    Rossi, Carlo A.
    JOURNAL OF ALGEBRA, 2011, 337 (01) : 1 - 12
  • [15] Deformation quantization of classical fields
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (14): : 2533 - 2558
  • [16] Graph Complexes in Deformation Quantization
    Domenico Fiorenza
    Lucian M. Ionescu
    Letters in Mathematical Physics, 2005, 73 : 193 - 208
  • [17] Morita theory in deformation quantization
    Waldmann, Stefan
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04): : 831 - 852
  • [18] On infinite walls in deformation quantization
    Kryukov, S
    Walton, MA
    ANNALS OF PHYSICS, 2005, 317 (02) : 474 - 491
  • [19] Deformation quantization of confined systems
    Dias, Nuno Costa
    Prata, Joao Nuno
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (1-2) : 257 - 263
  • [20] Deformation quantization of Poisson manifolds
    Kontsevich, M
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) : 157 - 216