3D Depth Profile Reconstruction of Segregated Impurities using Secondary Ion Mass Spectrometry

被引:0
|
作者
Michalowski, Pawel Piotr [1 ]
Zlotnik, Sebastian [1 ]
Jozwik, Iwona [1 ]
Chamryga, Adrianna [1 ]
Rudzinski, Mariusz [1 ]
机构
[1] Lukasiewicz Res Network, Inst Elect Mat Technol, Warsaw, Poland
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2020年 / 158期
关键词
Chemistry; Issue; 158; secondary ion mass spectrometry; gallium nitride; defect selective etching; dislocation; impurity; oxygen; GAN; GALLIUM;
D O I
10.3791/61065
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The presented protocol combines excellent detection limits (1 ppm to 1 ppb) using secondary ion mass spectrometry (SIMS) with reasonable spatial resolution (similar to 1 pm). Furthermore, it describes how to obtain realistic three-dimensional (3D) distributions of segregated impurities/ dopants in solid state materials. Direct 3D depth profile reconstruction is often difficult to achieve due to SIMS-related measurement artifacts. Presented here is a method to identify and solve this challenge. Three major issues are discussed, including the i) nonuniformity of the detector being compensated by flat-field correction; ii) vacuum background contribution (parasitic oxygen counts from residual gases present in the analysis chamber) being estimated and subtracted; and iii) performance of all steps within a stable timespan of the primary ion source. Wet chemical etching is used to reveal the position and types of dislocation in a material, then the SIMS result is superimposed on images obtained via scanning electron microscopy (SEM). Thus, the position of agglomerated impurities can be related to the position of certain defects. The method is fast and does not require sophisticated sample preparation stage; however, it requires a high-quality, stable ion source, and the entire measurement must be performed quickly to avoid deterioration of the primary beam parameters.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ABOUT USING OF SECONDARY ION MASS SPECTROMETRY METHOD FOR RESEARCH OF BIOORGANIC OBJECTS
    Litvinov, V. A.
    Koppe, V. T.
    Bobkov, V. V.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2015, 2 (04): : 58 - 71
  • [22] Studies using negative secondary ion mass spectrometry: Hydrogen on iron surface
    Shvachko, VI
    SURFACE SCIENCE, 1998, 411 (03) : L882 - L887
  • [23] Hydrogen isotopic fractionation in secondary ion mass spectrometry using polyatomic ions
    Bardin, Noemie
    Duprat, Jean
    Slodzian, Georges
    Wu, Ting-Di
    Baklouti, Donia
    Dartois, Emmanuel
    Brunetto, Rosario
    Engrand, Cecile
    Guerquin-Kern, Jean-Luc
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2015, 393 : 17 - 24
  • [24] Depth Profiling of Layered Si-O-Al Thin Films with Secondary Ion Mass Spectrometry and Rutherford Backscattering Spectrometry
    Bachurin, V., I
    Melesov, N. S.
    Mironenko, A. A.
    Parshin, E. O.
    Rudy, A. S.
    Simakin, S. G.
    Churilov, A. B.
    JOURNAL OF SURFACE INVESTIGATION, 2019, 13 (02): : 300 - 305
  • [25] Detecting real oxygen ions in polycrystalline diamond thin film using secondary ion mass spectrometry
    Nakagawa, Tsubasa
    Sakaguchi, Isao
    Haneda, Hajime
    Ohashi, Naoki
    Ikuhara, Yuichi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (6A): : 3391 - 3393
  • [26] 'Box-Profile' Ion Implants as Geochemical Reference Materials for Electron Probe Microanalysis and Secondary Ion Mass Spectrometry
    Wu, Haosheng
    Boettger, Roman
    Couffignal, Frederic
    Gutzmer, Jens
    Krause, Joachim
    Munnik, Frans
    Renno, Axel D.
    Huebner, Rene
    Wiedenbeck, Michael
    Ziegenruecker, Rene
    GEOSTANDARDS AND GEOANALYTICAL RESEARCH, 2019, 43 (04) : 531 - 541
  • [27] Chemical Imaging of Cardiac Cell and Tissue by Using Secondary Ion Mass Spectrometry
    Jerigova, Monika
    Biro, Csaba
    Kirchnerova, Jana
    Chorvatova, Alzbeta
    Chorvat, Dusan, Jr.
    Lorenc, Dusan
    Velic, Dusan
    MOLECULAR IMAGING AND BIOLOGY, 2011, 13 (06) : 1067 - 1076
  • [28] Determination of niobium diffusion in titania and zirconia using secondary ion mass spectrometry
    Sheppard, L. R.
    Zhou, M. F.
    Atanacio, A.
    Bak, T.
    Nowotny, J.
    Prince, K. E.
    ADVANCES IN APPLIED CERAMICS, 2007, 106 (1-2) : 89 - 94
  • [29] Secondary ion mass spectrometry with C60+ and Au4004+ projectiles:: Depth and nature of secondary ion emission from multilayer assemblies
    Li, Zhen
    Verkhoturov, Stanislav V.
    Locklear, Jay E.
    Schweikert, Emile A.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2008, 269 (1-2) : 112 - 117
  • [30] Quantitative secondary ion mass spectrometry analysis of carbon and fluorine impurities on silicon wafers stored in polymer carrier cases
    Yamazaki, H
    Tamaoki, M
    Oohashi, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2000, 39 (08): : 4744 - 4748