We consider bisimulation-invariant monadic second-order logic over various classes of finite transition systems. We present several combinatorial characterisations of when the expressive power of this fragment coincides with that of the modal u-calculus. Using these characterisations we prove for some simple classes of transition systems that this is indeed the case. In particular, we show that, over the class of all finite transition systems with Cantor-Bendixson rank at most k, bisimulation-invariant MSO coincides with L. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Univ Bordeaux 1, CNRS Lab 5800, LABRI, 351 Cours de la Liberat, F-33405 Talence, FranceUniv Bordeaux 1, CNRS Lab 5800, LABRI, 351 Cours de la Liberat, F-33405 Talence, France
Courcelle, B
Knapik, T
论文数: 0引用数: 0
h-index: 0
机构:Univ Bordeaux 1, CNRS Lab 5800, LABRI, 351 Cours de la Liberat, F-33405 Talence, France