Analysis of the clamping effects on the passive direct methanol fuel cell performance using electrochemical impedance spectroscopy

被引:25
作者
Mallick, Ranjan K. [1 ]
Thombre, Shashikant B. [1 ]
Motghare, Ramani V. [2 ]
Chillawar, Rakesh R. [2 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Mech Engn, Nagpur 440010, Maharashtra, India
[2] Visvesvaraya Natl Inst Technol, Dept Chem, Nagpur 440010, Maharashtra, India
关键词
Passive DMFC; clamping bolt torque; bolt configuration; electrochemical impedance spectroscopy; PRESSURE DISTRIBUTION; ASSEMBLY PRESSURE; DMFC; COMPRESSION; STACK; CONFIGURATIONS; DESIGN; LAYER;
D O I
10.1016/j.electacta.2016.08.080
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The clamping effects on a passive direct methanol fuel cell (DMFC) performance have been analysed using electrochemical impedance spectroscopy (EIS). The stainless steel bolts of size M 6 x 0.75 mm with a length of 50 mm have been used for clamping the cell. The passive DMFC performance was conducted for different combinations of clamping bolt torque and methanol concentrations. It is found that the cell performance decreases with under and over uniform clamping bolt torque, and it is maximum at a particular clamping bolt torque. It is concluded from the EIS study that both the ohmic and mass transfer resistance decides the optimum clamping bolt torque of the passive DMFC. The EIS study also reveals that the non-uniform clamping bolt torque deteriorates the DMFC performance due to increase of the ohmic resistance and mass transfer resistance as well. The effects of bolt configurations on the cell performance have also been discussed. In this study, eight bolt configurations passive DMFC under 8.0 N m uniform clamping bolt torque produces optimum cell performance at 4 molar methanol concentrations. It is therefore recommended to decide clamping bolt torque accurately during assembling of the passive DMFC. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 161
页数:12
相关论文
共 50 条
  • [21] A new structure of a passive direct methanol fuel cell
    Zheng, Wukui
    Suominen, Arho
    Kankaanranta, Jarno
    Tuominen, Aulis
    CHEMICAL ENGINEERING SCIENCE, 2012, 76 : 188 - 191
  • [22] Electrochemical Impedance Spectroscopy of Direct Methanol Fuel Cell Having Ag/Ag2SO4 Reference Electrode
    Inoue, Mitsuhiro
    Iwasaki, Tatsuya
    Umeda, Minoru
    ELECTROCHEMISTRY, 2011, 79 (05) : 329 - 333
  • [23] Experimental Evaluation of the Effect of the Anode Diffusion Layer Properties on the Performance of a Passive Direct Methanol Fuel Cell
    Braz, Beatriz A.
    Oliveira, Vania B.
    Pinto, Alexandra M. F. R.
    ENERGIES, 2020, 13 (19)
  • [24] Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell
    Hashemi, R.
    Yousefi, S.
    Faraji, M.
    IONICS, 2015, 21 (10) : 2851 - 2862
  • [25] Analysis of performance losses of direct methanol fuel cell with methanol tolerant PtCoRu/C cathode electrode
    Escudero-Cid, R.
    Hernandez-Fernandez, P.
    Perez-Flores, J. C.
    Rojas, S.
    Garcia-Rodriguez, S.
    Fatas, E.
    Ocon, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) : 7119 - 7130
  • [26] The Effect of a Reduction in the Catalyst Loading on a Mini Passive Direct Methanol Fuel Cell
    Moreira, C. S.
    Pinto, A. M. F. R.
    Oliveira, V. B.
    ENERGIES, 2024, 17 (20)
  • [27] Numerical analysis of the electrochemical impedance spectra of the cathode of direct methanol fuel cells
    Chen, M.
    Du, C. Y.
    Yin, G. P.
    Shi, P. F.
    Zhao, T. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) : 1522 - 1530
  • [28] A physical model of Direct Methanol Fuel Cell anode impedance
    Zago, M.
    Casalegno, A.
    JOURNAL OF POWER SOURCES, 2014, 248 : 1181 - 1190
  • [29] Design and Performance Analysis of Direct Methanol Fuel Cell
    Cao Lingzhi
    Su Zhili
    Li Chunwen
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4030 - +
  • [30] Modeling of passive vapor feed alkaline membrane direct methanol fuel cell
    Xie, Xu
    Yu, Haibo
    Deng, Hao
    Zhang, Guobin
    Guo, Ting
    Sun, Jing
    Jiao, Kui
    APPLIED THERMAL ENGINEERING, 2018, 131 : 920 - 932