Artifacts in EEG-Based BCI Therapies: Friend or Foe?

被引:10
|
作者
McDermott, Eric James [1 ,2 ]
Raggam, Philipp [1 ,2 ,3 ]
Kirsch, Sven [4 ]
Belardinelli, Paolo [1 ,2 ,5 ]
Ziemann, Ulf [1 ,2 ]
Zrenner, Christoph [1 ,2 ,6 ,7 ]
机构
[1] Univ Hosp Tubingen, Dept Neurol & Stroke, D-72076 Tubingen, Germany
[2] Univ Tubingen, Hertie Inst Clin Brain Res, D-72076 Tubingen, Germany
[3] Univ Vienna, Fac Comp Sci, Res Grp Neuroinformat, A-1010 Vienna, Austria
[4] Hsch Medien, Inst Games, D-70569 Stuttgart, Germany
[5] Univ Trento, Ctr Mind Brain Sci, CIMeC, I-38123 Trento, Italy
[6] Univ Toronto, Dept Psychiat, Toronto, ON M5T 1R8, Canada
[7] Ctr Addict & Mental Hlth, Temerty Ctr Therapeut Brain Intervent, Toronto, ON M6J 1H4, Canada
关键词
EEG; artifact; BCI; classification; virtual reality; naturalistic movement; stroke; neurorehabilitation; COMMON SPATIAL-PATTERNS; SINGLE-TRIAL EEG;
D O I
10.3390/s22010096
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
EEG-based brain-computer interfaces (BCI) have promising therapeutic potential beyond traditional neurofeedback training, such as enabling personalized and optimized virtual reality (VR) neurorehabilitation paradigms where the timing and parameters of the visual experience is synchronized with specific brain states. While BCI algorithms are often designed to focus on whichever portion of a signal is most informative, in these brain-state-synchronized applications, it is of critical importance that the resulting decoder is sensitive to physiological brain activity representative of various mental states, and not to artifacts, such as those arising from naturalistic movements. In this study, we compare the relative classification accuracy with which different motor tasks can be decoded from both extracted brain activity and artifacts contained in the EEG signal. EEG data were collected from 17 chronic stroke patients while performing six different head, hand, and arm movements in a realistic VR-based neurorehabilitation paradigm. Results show that the artifactual component of the EEG signal is significantly more informative than brain activity with respect to classification accuracy. This finding is consistent across different feature extraction methods and classification pipelines. While informative brain signals can be recovered with suitable cleaning procedures, we recommend that features should not be designed solely to maximize classification accuracy, as this could select for remaining artifactual components. We also propose the use of machine learning approaches that are interpretable to verify that classification is driven by physiological brain states. In summary, whereas informative artifacts are a helpful friend in BCI-based communication applications, they can be a problematic foe in the estimation of physiological brain states.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Classification of EEG-based Emotion for BCI Applications
    Mohammadpour, Mostafa
    Hashemi, Seyyed Mohammad Reza
    Houshmand, Negin
    2017 ARTIFICIAL INTELLIGENCE AND ROBOTICS (IRANOPEN), 2017, : 127 - 131
  • [2] EEG-based BCI and video games: a progress report
    Kerous, Bojan
    Skola, Filip
    Liarokapis, Fotis
    VIRTUAL REALITY, 2018, 22 (02) : 119 - 135
  • [3] An EEG-Based BCI System to Facial Action Recognition
    Jzau-Sheng Lin
    Zih-Yang Jiang
    Wireless Personal Communications, 2017, 94 : 1579 - 1593
  • [4] An EEG-Based BCI System to Facial Action Recognition
    Lin, Jzau-Sheng
    Jiang, Zih-Yang
    WIRELESS PERSONAL COMMUNICATIONS, 2017, 94 (03) : 1579 - 1593
  • [5] A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance
    Meng, Jianjun
    Edelman, Bradley J.
    Olsoe, Jaron
    Jacobs, Gabriel
    Zhang, Shuying
    Beyko, Angeliki
    He, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [6] EEG-Based BCI Emotion Recognition: A Survey
    Torres, Edgar P.
    Torres, Edgar A.
    Hernandez-Alvarez, Myriam
    Yoo, Sang Guun
    SENSORS, 2020, 20 (18) : 1 - 36
  • [7] Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue
    Talukdar, Upasana
    Hazarika, Shyamanta M.
    Gan, John Q.
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
  • [8] EEG-Based User Authentication Using Artifacts
    Tien Pham
    Ma, Wanli
    Dat Tran
    Phuoc Nguyen
    Dinh Phung
    INTERNATIONAL JOINT CONFERENCE SOCO'14-CISIS'14-ICEUTE'14, 2014, 299 : 343 - 353
  • [9] The analytic common spatial patterns method for EEG-based BCI data
    Falzon, Owen
    Camilleri, Kenneth P.
    Muscat, Joseph
    JOURNAL OF NEURAL ENGINEERING, 2012, 9 (04)
  • [10] Past, Present, and Future of EEG-Based BCI Applications
    Varbu, Kaido
    Muhammad, Naveed
    Muhammad, Yar
    SENSORS, 2022, 22 (09)