Effect of drying environment on mechanical properties, internal RH and pore structure of 3D printed concrete

被引:48
|
作者
Ma, Lei [1 ]
Zhang, Qing [2 ]
Jia, Zijian [1 ]
Liu, Chao [1 ]
Deng, Zhicong [1 ]
Zhang, Yamei [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Construct Mat, Nanjing 211189, Peoples R China
[2] Holcim Innovat Ctr, F-38291 St Quentin Fallavier, France
基金
中国国家自然科学基金;
关键词
3D printing; Drying; Mechanical properties; Pore structure; Internal RH; STRENGTH DEVELOPMENT; HARDENED PROPERTIES; EARLY-AGE; SHRINKAGE; MOISTURE; POROSITY; FRESH; PERFORMANCE; PARAMETERS; COMPOSITE;
D O I
10.1016/j.conbuildmat.2021.125731
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printed concrete (3DPC) is fabricated by depositing printable materials without formwork which increases the surface exposed to environmental condition, and by default, eliminates the curing procedure. As a result, moisture evaporation from printed concrete mitigates the hydration of cement and impacts the development of the mechanical properties. In this study, the effects of drying (RH = 60%+/- 5%), wind (3 m/s) and exposed area on the mechanical properties of 3DPC at 20 degrees C +/- 5 degrees C were investigated. Furtherly, the internal relative humidity evolvement was measured by humidity sensor and the pore distribution was evaluated by X-ray computed tomography. Curing condition were found to have a significant influence on compressive and flexural strength development for samples cut from printed elements and cast samples, but had less significant effect on splitting tensile strength. Furthermore, compared with cast specimens, samples cut from printed elements were more sensitive to curing condition. Evidence on the pore structure seemed to explain the difference: the pore connectivity increased and the pore distribution varied for samples cut from printed elements. We also confirmed the existence of anisotropy for samples cut from printed elements and found that it did not aggravate in drying and wind conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of transient drying on mechanical properties of concrete specimens
    Soleilhet, Francois
    Benboudjema, Farid
    Jourdain, Xavier
    Gatuingt, Fabrice
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (13) : 6650 - 6669
  • [22] Mechanism of the influence of multi-scale pore structure on the triaxial mechanical properties of 3D printed concrete with recycled sand
    Wu, Yiwen
    Liu, Chao
    Liu, Huawei
    Bai, Guoliang
    Meng, Yisheng
    Ding, Shumin
    CEMENT & CONCRETE COMPOSITES, 2024, 152
  • [23] Mechanical Properties of 3D Printed Composite Material on Various Thermal Environment
    Kang, Sang-Hun
    Kim, Do-Hyeon
    Seo, Hyoung-Seock
    COMPOSITES RESEARCH, 2023, 36 (03): : 193 - 198
  • [24] The influence of pore structure and fiber orientation on anisotropic mechanical property of 3D printed ultra-high-performance concrete
    Yuan, Hanquan
    Dong, Enlai
    Jia, Zijian
    Jia, Lutao
    Quan, Shitao
    Ma, Minglei
    Yang, Yan
    Feng, Mingyang
    Banthia, Numkumar
    Zhang, Yamei
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 471
  • [25] Anisotropic mechanical properties of extrusion-based 3D printed layered concrete
    Liu, Chenkang
    Yue, Songlin
    Zhou, Cong
    Sun, Honglei
    Deng, Shuxin
    Gao, Fei
    Tan, Yizhong
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (30) : 16851 - 16864
  • [26] State-of-the-art of mechanical properties of 3D printed concrete
    Cai, Jianguo
    Wang, Jingsong
    Zhang, Qian
    Du, Caixia
    Meloni, Marco
    Feng, Jian
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [27] Mechanical characterization of 3D printable concrete
    Rahul, A., V
    Santhanam, Manu
    Meena, Hitesh
    Ghani, Zimam
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 227
  • [28] Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed parts
    Exley O.
    Perera Y.S.
    Abeykoon C.
    International Journal of Lightweight Materials and Manufacture, 2024, 7 (01) : 45 - 61
  • [29] Influence of Internal Innovative Architecture on the Mechanical Properties of 3D Polymer Printed Parts
    Pop, Mihai Alin
    Croitoru, Catalin
    Bedo, Tibor
    Geaman, Virgil
    Radomir, Irinel
    Zaharia, Sebastian Marian
    Chicos, Lucia Antoaneta
    POLYMERS, 2020, 12 (05)
  • [30] Mechanical properties of 3D printed polycaprolactone honeycomb structure
    Zhang, Pengfei
    Arceneaux, Donald Joseph
    Khattab, Ahmed
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (12)