INTERMITTENCY NEAR A CODIMENSION THREE STEADY-STATE BIFURCATION

被引:0
|
作者
Blomgren, Peter [1 ]
Martinez, Joan Manuel [1 ]
Palacios, Antonio [1 ]
机构
[1] San Diego State Univ, Dept Math & Stat, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
Bifurcation; cellular flames; spatio-temporal patterns; KURAMOTO-SIVASHINSKY-EQUATION; HETEROCLINIC CYCLES; COHERENT STRUCTURES; HOPPING BEHAVIOR; O(2) SYMMETRY; TURBULENCE; SYSTEMS; DYNAMICS; PATTERNS;
D O I
10.1142/S0218127411028428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and stability of heteroclinic connections near "hopping" cellular flame patterns. These are dynamic patterns in which individual cells make sequential, and abrupt, changes in their angular positions while they rotate nonuniformly about the center of a circular domain. Normal form analysis and experimental works have shown that these patterns are associated with a homoclinic cycle connecting group related equilibria. In fact, they emerge through a codimension three steady-state bifurcation of three modes with wave numbers in a 2: 3: 4 ratio. While cycles are known to exist in the mode-2 and mode-4 interactions, here we show that mode-3 destabilizes the connection so that only remnants, i.e. intermittent flame patterns of the cycles can be observed.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 50 条
  • [21] Bifurcation analysis of steady-state flows in the lid-driven cavity
    Nuriev, A. N.
    Egorov, A. G.
    Zaitseva, O. N.
    FLUID DYNAMICS RESEARCH, 2016, 48 (06)
  • [22] BIFURCATION FROM STEADY-STATE OF A DISSIPATIVE 3-WAVE INTERACTION
    HE, KF
    CHINESE PHYSICS, 1989, 9 (01): : 39 - 44
  • [23] Steady-State Bifurcation and Hopf Bifurcation in a Reaction-Diffusion-Advection System with Delay Effect
    Liu, Di
    Jiang, Weihua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1777 - 1817
  • [24] BIFURCATION OF STEADY-STATE SOLUTIONS IN PREDATOR-PREY AND COMPETITION SYSTEMS
    BLAT, J
    BROWN, KJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 97 : 21 - 34
  • [25] Steady-state bifurcation of FHN-type oscillator on a square domain
    Zhang, Chunrui
    Liu, Xiaoxiao
    Zheng, Baodong
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (04): : 697 - 719
  • [26] BIFURCATION AND STABILITY OF THE STEADY-STATE COUPLING OF ELASTICALLY DEFORMABLE ROLLING BODIES
    VERBITSKII, VG
    LOBAS, LG
    SOVIET APPLIED MECHANICS, 1987, 23 (08): : 793 - 798
  • [27] Steady-state bifurcation analysis of a strong nonlinear atmospheric vorticity equation
    Chen, Zhi-Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 1 - 21
  • [28] Bifurcation in the Steady-State Height of Colloidal Particles near an Electrode in Oscillatory Electric Fields: Evidence for a Tertiary Potential Minimum
    Woehl, T. J.
    Chen, B. J.
    Heatley, K. L.
    Talken, N. H.
    Bukosky, S. C.
    Dutcher, C. S.
    Ristenpart, W. D.
    PHYSICAL REVIEW X, 2015, 5 (01):
  • [29] THE STEADY-STATE
    RUBINO, CA
    SCIENCES-NEW YORK, 1985, 25 (02): : 18 - 19
  • [30] A three-dimensional steady-state tumor system
    Hao, Wenrui
    Hauenstein, Jonathan D.
    Hu, Bei
    Sommese, Andrew J.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2661 - 2669