Hermite-Hadamard-type inequalities via (α, m)-convexity

被引:83
|
作者
Ozdemir, M. Emin [1 ]
Avci, Merve [1 ]
Kavurmaci, Havva [1 ]
机构
[1] Ataturk Univ, KK Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
关键词
(alpha; m)-convex functions; Convexity; Hermite-Hadamard inequality; Holder's integral inequality; Power-mean integral inequality; Euler-beta function; Gamma function;
D O I
10.1016/j.camwa.2011.02.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish several new inequalities for functions whose second derivative in absolute value aroused to the qth (q >= 1) power are (alpha, m)-convex. Some applications to special means of positive real numbers are also given. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2614 / 2620
页数:7
相关论文
共 50 条
  • [11] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223
  • [13] A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Butt, Saad Ihsan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [14] ON HERMITE-HADAMARD-TYPE CHARACTERIZATIONS OF HIGHER-ORDER DIFFERENTIAL INEQUALITIES
    Jleli, Mohamed
    Samet, Bessem
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2158 - 2170
  • [15] New Hermite-Hadamard-type inequalities for convex functions (II)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 401 - 418
  • [16] New Hermite-Hadamard-type inequalities for convex functions (I)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1005 - 1009
  • [17] Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications
    Srivastava, Hari M.
    Mehrez, Sana
    Sitnik, Sergei M.
    MATHEMATICS, 2022, 10 (17)
  • [18] SYMMETRIZED CONVEXITY AND HERMITE-HADAMARD TYPE INEQUALITIES
    Dragomir, S. S.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 901 - 918
  • [19] Strongly (g,h;α - m)-convex functions and the consequent Hermite-Hadamard-type inequalities
    Liu, Yonghong
    Farid, Ghulam
    Pecaric, Josip
    Ro, Jongsuk
    Elamin, Mawahib
    Abdel-Khalek, Sayed
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [20] Hermite-Hadamard Type Inequalities via New Exponential Type Convexity and Their Applications
    Butt, Saad Ihsan
    Kashuri, Artion
    Nasir, Jamshed
    FILOMAT, 2021, 35 (06) : 1803 - 1822