A robust extreme learning machine framework for uncertain data classification

被引:3
|
作者
Jing, Shibo [1 ]
Yang, Liming [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
关键词
Uncertainty; Extreme learning machine; Probability constraint; Second-order cone programming; Expectation maximization (EM) algorithm; Missing data; MISSING DATA;
D O I
10.1007/s11227-018-2430-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain or missing data may occur in many practical applications. A principled strategy for handling this problem would therefore be very useful. We consider two-class and multi-class classification problems where the mean and covariance of each class are assumed to be known. With simple structure, fast speed and good performance, extreme learning machine (ELM) has been an important technology in machine learning. In this work, from the viewpoint of probability, we present a robust ELM framework (RELM) for missing data classification. Applying the Chebyshev-Cantelli inequality, the proposed RELM is reformulated as a second-order cone programming with global optimal solution. The proposed RELM only relates to the second moments of input samples and makes no assumption about the data probability distribution. Expectation maximization algorithm is used to fill in missing values and then obtain complete data. Numerical experiments are simulated in various datasets from UCI database and a practical application database. Experimental results show that the proposed method can achieve better performance than traditional methods. These results illustrate the feasibility and effectiveness of the proposed method for missing data classification.
引用
收藏
页码:2390 / 2416
页数:27
相关论文
共 50 条
  • [31] Data Stream Classification Based on Extreme Learning Machine: Review
    Zheng, Xiulin
    Li, Peipei
    Wu, Xindong
    BIG DATA RESEARCH, 2022, 30
  • [32] IMBALANCED DATA CLASSIFICATION BASED ON EXTREME LEARNING MACHINE AUTOENCODER
    Shen, Chu
    Zhang, Su-Fang
    Zhai, Jun-Hal
    Luo, Ding-Sheng
    Chen, Jun-Fen
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2018, : 399 - 404
  • [33] Extreme learning machine for missing data using multiple imputations
    Sovilj, Dusan
    Eirola, Emil
    Miche, Yoan
    Bjork, Kaj-Mikael
    Nian, Rui
    Akusok, Anton
    Lendasse, Amaury
    NEUROCOMPUTING, 2016, 174 : 220 - 231
  • [34] Classification with boosting of extreme learning machine over arbitrarily partitioned data
    Ferhat Özgür Çatak
    Soft Computing, 2017, 21 : 2269 - 2281
  • [35] A cooperative genetic algorithm based on extreme learning machine for data classification
    Lixia Bai
    Hong Li
    Weifeng Gao
    Jin Xie
    Soft Computing, 2022, 26 : 8585 - 8601
  • [36] A smooth extreme learning machine framework
    Yang, Liming
    Zhang, Siyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (06) : 3373 - 3381
  • [37] A fast incremental extreme learning machine algorithm for data streams classification
    Xu, Shuliang
    Wang, Junhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 65 : 332 - 344
  • [38] Probabilistic Extreme Learning Machine and Its Application in the Classification of WWTP Data
    Zhao, Lijie
    Diao, Xiaokun
    Yuan, Decheng
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (11A): : 4557 - 4562
  • [39] Approximate kernel extreme learning machine for large scale data classification
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    NEUROCOMPUTING, 2017, 219 : 210 - 220
  • [40] Dual weighted extreme learning machine for imbalanced data stream classification
    Zhang, Yong
    Liu, Wenzhe
    Ren, Xuezhen
    Ren, Yonggong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (02) : 1143 - 1154