Time-Periodic Einstein-Klein-Gordon Bifurcations of Kerr

被引:16
作者
Chodosh, Otis [1 ]
Shlapentokh-Rothman, Yakov [1 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
BLACK-HOLE SOLUTIONS; WAVE-EQUATION; ENERGY DECAY; STABILITY; UNIQUENESS; EXISTENCE; PROOF; MASS;
D O I
10.1007/s00220-017-2998-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct one-parameter families of solutions to the Einstein-Klein-Gordon equations bifurcating off the Kerr solution such that the underlying family of spacetimes are each an asymptotically flat, stationary, axisymmetric, black hole spacetime, and such that the corresponding scalar fields are non-zero and time-periodic. An immediate corollary is that for these Klein-Gordon masses, the Kerr family is not asymptotically stable as a solution to the Einstein-Klein-Gordon equations.
引用
收藏
页码:1155 / 1250
页数:96
相关论文
共 72 条
[1]  
AGMON S, 1985, LECT NOTES MATH, V1159, P1
[2]   Uniqueness of Smooth Stationary Black Holes in Vacuum: Small Perturbations of the Kerr Spaces [J].
Alexakis, S. ;
Ionescu, A. D. ;
Klainerman, S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (01) :89-127
[3]  
Alexakis S., 2015, J DIFFER GE IN PRESS
[4]   Unique continuation from infinity for linear waves [J].
Alexakis, Spyros ;
Schlue, Volker ;
Shao, Arick .
ADVANCES IN MATHEMATICS, 2016, 286 :481-544
[5]   HAWKING'S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY [J].
Alexakis, Spyros ;
Ionescu, Alexandru D. ;
Klainerman, Sergiu .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (04) :845-869
[6]   Hidden symmetries and decay for the wave equation on the Kerr spacetime [J].
Andersson, Lars ;
Blue, Pieter .
ANNALS OF MATHEMATICS, 2015, 182 (03) :787-853
[7]  
[Anonymous], 1983, CBMS Regional Conference Series in Mathematics
[8]  
[Anonymous], 1983, THESIS
[9]  
[Anonymous], 1968, Commun. Math. Phys., DOI [10. 1007/BF01645859, DOI 10.1007/BF01645859, 10.1007/BF01645859]
[10]  
[Anonymous], 2010, ARXIV10105132