Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete

被引:16
|
作者
Ranjbar, Iman [1 ]
Toufigh, Vahab [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
关键词
Concrete damage assessment; Ultrasonic; Deep learning; Long short-term memory; LSTM; k-means clustering; Dynamic time warping; MEANS CLUSTERING-ALGORITHM; GEOPOLYMER CONCRETE; COMPRESSIVE STRENGTH; WAVE-PROPAGATION; NEURAL-NETWORKS; PULSE VELOCITY; PREDICTION; FAULT;
D O I
10.1016/j.cemconres.2022.107003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presented a comprehensive study on developing a deep learning approach for ultrasonic-based distributed damage assessment in concrete. In particular, two architectures of long short-term memory (LSTM) networks were proposed: (1) a classification model to evaluate the concrete's damage stage; (2) a regression model to predict the concrete's absorbed energy ratio. Two input configurations were considered and compared for both architectures: (1) the input was a single signal; (2) the inputs were four signals from four sides of the specimen. A comprehensive experimental study was designed and conducted on ground granulated blast furnace slag-based geopolymer concrete, providing a total number of 1920 ultrasonic signals from different damage stages. Unsupervised k-means clustering based on dynamic time warping (DTW) was implemented to cluster the ultrasonic response signals from the experimental study into five defined damage stages. The proposed LSTM architectures were successfully trained and validated using the experimental dataset. Moreover, the performance of the LSTM models was evaluated in noisy environments. The proposed LSTM models in this study used the time series of response signals for damage assessment. Therefore, the damage-sensitive features were automatically extracted by the LSTM layers. For comparison, a set of linear and nonlinear ultrasonic features were manually extracted from the response signals as damage-sensitive features, and their sensitivity to damage was investigated. Artificial neural networks were implemented to combine the extracted features and perform the same tasks defined for LSTM models. Comparing the two approaches showed that using the time series of ultrasonic response signals as the input of LSTM models outperforms the idea of using the manually extracted features. This study showed that the presented method is efficient, reliable, and promising for nondestructive evaluation of damage in concrete.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
    Atef, Sara
    Eltawil, Amr B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187 (187)
  • [32] Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting
    Bilgili, Mehmet
    Arslan, Niyazi
    Sekertekin, Aliihsan
    Yasar, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (01) : 140 - 157
  • [33] Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory
    Lopez, Erick
    Valle, Carlos
    Allende, Hector
    Gil, Esteban
    Madsen, Henrik
    ENERGIES, 2018, 11 (03)
  • [34] Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory
    Dobrovolny, Michal
    Selamat, Ali
    Krejcar, Ondrej
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 53 - 65
  • [35] Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory
    Zhang, Guohao
    Xu, Penghui
    Xu, Haosheng
    Hsu, Li-Ta
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 20563 - 20577
  • [36] Intrusion detection systems using long short-term memory (LSTM)
    Laghrissi, FatimaEzzahra
    Douzi, Samira
    Douzi, Khadija
    Hssina, Badr
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [37] Credit Risk Assessment Based on Long Short-Term Memory Model
    Zhang, Yishen
    Wang, Dong
    Chen, Yuehui
    Shang, Huijie
    Tian, Qi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 700 - 712
  • [38] Deep Bi-directional Long Short-Term Memory Model for Short-Term Traffic Flow Prediction
    Wang, Jingyuan
    Hu, Fei
    Li, Li
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 306 - 316
  • [39] IGBT aging monitoring and remaining lifetime prediction based on long short-term memory (LSTM) networks
    Li, Wanping
    Wang, Bixuan
    Liu, Jingcun
    Zhang, Guogang
    Wang, Jianhua
    MICROELECTRONICS RELIABILITY, 2020, 114
  • [40] Intrusion detection systems using long short-term memory (LSTM)
    FatimaEzzahra Laghrissi
    Samira Douzi
    Khadija Douzi
    Badr Hssina
    Journal of Big Data, 8