Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage

被引:16
作者
Locatelli, Monica [1 ]
Macconi, Daniela [1 ]
Corna, Daniela [1 ]
Cerullo, Domenico [1 ]
Rottoli, Daniela [1 ]
Remuzzi, Giuseppe [1 ]
Benigni, Ariela [1 ]
Zoja, Carlamaria [1 ]
机构
[1] Ist Ric Farmacol Mario Negri IRCCS, Ctr Anna Maria Astori, Sci & Technol Pk Kilometro Rosso, I-24126 Bergamo, Italy
关键词
high-fat-diet; sirtuin; 3; oxidative stress; mitochondrial damage; lipotoxicity; kidney damage; RENAL LIPID-ACCUMULATION; METABOLIC SYNDROME; ACID OXIDATION; ATP SYNTHASE; OBESITY; EXPRESSION; CYCLE;
D O I
10.3390/ijms23158345
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3(-/-) mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3(-/-) mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3(-/-) mice. After HFD, kidneys from Sirt3(-/-) mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.
引用
收藏
页数:15
相关论文
共 45 条
  • [1] Renal lipotoxicity: Insights from experimental models
    Abreu Castro, Barbara Bruna
    Foresto-Neto, Orestes
    Saraiva-Camara, Niels Olsen
    Sanders-Pinheiro, Helady
    [J]. CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2021, 48 (12) : 1579 - 1588
  • [2] The expression level of the voltage-dependent anion channel controls life and death of the cell
    Abu-Hamad, S
    Sivan, S
    Shoshan-Barmatz, V
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) : 5787 - 5792
  • [3] The Glomerular Endothelium Restricts Albumin Filtration
    Ballermann, Barbara J.
    Nystrom, Jenny
    Haraldsson, Borje
    [J]. FRONTIERS IN MEDICINE, 2021, 8
  • [4] SIRT3 regulation of mitochondrial oxidative stress
    Bause, Alexandra S.
    Haigis, Marcia C.
    [J]. EXPERIMENTAL GERONTOLOGY, 2013, 48 (07) : 634 - 639
  • [5] Sirt3 Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by Opa1 Gene Transfer
    Benigni, Ariela
    Cassis, Paola
    Conti, Sara
    Perico, Luca
    Corna, Daniela
    Cerullo, Domenico
    Zentilin, Lorena
    Zoja, Carlamaria
    Perna, Annalisa
    Lionetti, Vincenzo
    Giacca, Mauro
    Trionfini, Piera
    Tomasoni, Susanna
    Remuzzi, Giuseppe
    [J]. ANTIOXIDANTS & REDOX SIGNALING, 2019, 31 (17) : 1255 - 1271
  • [6] Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies
    Bhatti, Jasvinder Singh
    Bhatti, Gurjit Kaur
    Reddy, P. Hemachandra
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (05): : 1066 - 1077
  • [7] The role of the podocyte in albumin filtration
    Brinkkoetter, Paul Thomas
    Ising, Christina
    Benzing, Thomas
    [J]. NATURE REVIEWS NEPHROLOGY, 2013, 9 (06) : 328 - 336
  • [8] Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease
    de Vries, Aiko P. J.
    Ruggenenti, Piero
    Ruan, Xiong Z.
    Praga, Manuel
    Cruzado, Josep M.
    Bajema, Ingeborg M.
    D'Agati, Vivette D.
    Lamb, Hildo J.
    Barlovic, Drazenka Pongrac
    Hojs, Radovan
    Abbate, Manuela
    Rodriquez, Rosa
    Mogensen, Carl Erik
    Porrini, Esteban
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2014, 2 (05) : 417 - 426
  • [9] Structural and functional changes in the kidneys of high-fat diet-induced obese mice
    Deji, Naoko
    Kume, Shinji
    Araki, Shin-ichi
    Soumura, Mariko
    Sugimoto, Toshiro
    Isshiki, Keiji
    Chin-Kanasaki, Masami
    Sakaguchi, Masayoshi
    Koya, Daisuke
    Haneda, Masakazu
    Kashiwagi, Atsunori
    Uzu, Takashi
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2009, 296 (01) : F118 - F126
  • [10] Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons
    Dodson, Matthew
    Wani, Willayat Y.
    Redmann, Matthew
    Benavides, Gloria A.
    Johnson, Michelle S.
    Ouyang, Xiaosen
    Cofield, Stacey S.
    Mitra, Kasturi
    Darley-Usmar, Victor
    Zhang, Jianhua
    [J]. AUTOPHAGY, 2017, 13 (11) : 1828 - 1840