An Approach for the Automatic Recommendation of Ontologies Using Collaborative Knowledge

被引:0
|
作者
Martinez-Romero, Marcos [1 ]
Vazquez-Naya, Jose M. [1 ]
Munteanu, Cristian R. [2 ]
Pereira, Javier [1 ]
Pazos, Alejandro [2 ]
机构
[1] Univ A Coruna, IMEDIR Ctr, La Coruna 15071, Spain
[2] Univ A Coruna, Dept Informat & Commun Technol, La Coruna 15071, Spain
关键词
ontology recommendation; Web; 2.0; Semantic Web; PRINCIPLES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, ontologies have become an essential tool to structure and reuse the exponential growth of information in the Web. As the number of publicly available ontoloeies increases, researchers face the problem of finding the ontology (or ontoloeies) which provides the best coverage for a particular context. In this paper, we propose an approach to automatically recommend the best ontology for an initial set of terms. The approach is based on measuring the adequacy of the ontology according to three different criteria: (I) How well the ontology covers the given terms, (2) the semantic richness of the ontology and, importantly, (3) the popularity of the ontology in the Web 2.0. In order to evaluate this approach, we implemented a prototype to recommend ontologies in the biomedical domain. Results show the importance of using collaborative knowledge in the field of ontology recommendation.
引用
收藏
页码:74 / +
页数:2
相关论文
共 50 条
  • [31] Collaborative knowledge management and ontologies - The ONTO-LOGGING platform
    Gerogiannakis, S
    Sintichakis, M
    Achilleopoulos, N
    KNOWLEDGE MANAGEMENT IN ELECTRONIC GOVERNMENT, 2003, 2645 : 127 - 138
  • [32] A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis
    Pham, Manh Cuong
    Cao, Yiwei
    Klamma, Ralf
    Jarke, Matthias
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2011, 17 (04) : 583 - 604
  • [33] A Collaborative Approach Toward Scientific Paper Recommendation Using Citation Context
    Sakib, Nazmus
    Ahmad, Rodina Binti
    Haruna, Khalid
    IEEE ACCESS, 2020, 8 : 51246 - 51255
  • [34] Extending collaborative filtering recommendation using word embedding: A hybrid approach
    Vuong Nguyen, Luong
    Nguyen, Tri-Hai
    Jung, Jason J.
    Camacho, David
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (16):
  • [35] A visualisation approach for collaborative planning systems based on ontologies
    Lino, NQ
    Tate, A
    EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2004, : 807 - 811
  • [36] Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
    Jaderyan, M.
    Khotanlou, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (08): : 1101 - 1116
  • [37] Knowledge distillation meets recommendation: collaborative distillation for top-N recommendation
    Jae-woong Lee
    Minjin Choi
    Lee Sael
    Hyunjung Shim
    Jongwuk Lee
    Knowledge and Information Systems, 2022, 64 : 1323 - 1348
  • [38] Knowledge distillation meets recommendation: collaborative distillation for top-N recommendation
    Lee, Jae-woong
    Choi, Minjin
    Sael, Lee
    Shim, Hyunjung
    Lee, Jongwuk
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (05) : 1323 - 1348
  • [39] A Hybrid Approach for Automatic Model Recommendation
    Vainshtein, Roman
    Greenstein-Messica, Asnat
    Katz, Gilad
    Shapira, Bracha
    Rokach, Lior
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1623 - 1626
  • [40] Automatic construction of lexicons, taxonomies, ontologies, and other knowledge structures
    Medelyan, Olena
    Witten, Ian H.
    Divoli, Anna
    Broekstra, Jeen
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 3 (04) : 257 - 279