Edge Effect Promotes Graphene-Confining Single-Atom Co-N4 and Rh-N4 for Bifunctional Oxygen Electrocatalysis

被引:21
作者
Zheng, Fangfang [1 ]
Ji, Yujin [1 ]
Dong, Huilong [2 ]
Liu, Cheng [1 ]
Chen, Shangqian [1 ]
Li, Youyong [1 ,3 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] Changshu Inst Technol, Sch Mat Engn, Changshu 215500, Jiangsu, Peoples R China
[3] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
TOTAL-ENERGY CALCULATIONS; REDUCTION REACTION; EMBEDDED GRAPHENE; CATALYTIC-ACTIVITY; DOPED GRAPHENE; CO2; REDUCTION; EVOLUTION; WATER; NITROGEN; CARBON;
D O I
10.1021/acs.jpcc.1c07691
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) holds a central position for performance improvement in reversible oxygen/water redox cell systems. Herein, taking the graphene-confining single-atom M-N-4 motif as an example, we explored the effect of a graphene edge (armchair and zigzag configurations) on their bifunctional ORR and OER activities. It is clarified that the symmetry breaking of the M-N-4 motif around the edge has a potential influence on the intermediates' adsorption and thermodynamic pictures. Based on the evaluation of the electrochemical step symmetry index (ESSI) and bifunctional index (BI), Co-N-4 and Rh-N-4 motifs at the armchair edge with BIs of 0.49 and 0.61 V are predicted as optimal bifunctional catalytic sites for the ORR/OER due to the d-band modulation from the edge environment. Our results unfold the effect of the graphene edge on the oxygen-involving electrocatalytic mechanism and provide a clear theoretical guidance for the design of bifunctional oxygen electrode materials in reversible fuel cells, electrolyzers, and rechargeable metal-air batteries.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 82 条
  • [1] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [2] Thermodynamics of an Electrocyclic Ring-Closure Reaction on Au(111)
    Bjork, Jonas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (38) : 21716 - 21721
  • [3] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [4] Water oxidation: From mechanisms to limitations
    Busch, Michael
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 278 - 284
  • [5] Exploring the Limitation of Molecular Water Oxidation Catalysts
    Busch, Michael
    Fabrizio, Alberto
    Luber, Sandra
    Hutter, Jurg
    Corminboeuf, Clemence
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (23) : 12404 - 12412
  • [6] Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution
    Busch, Michael
    Halck, Niels B.
    Kramm, Ulrike I.
    Siahrostami, Samira
    Krtil, Petr
    Rossmeisl, Jan
    [J]. NANO ENERGY, 2016, 29 : 126 - 135
  • [7] How covalence breaks adsorption-energy scaling relations and solvation restores them
    Calle-Vallejo, Federico
    Krabbe, Alexander
    Garcia-Lastra, Juan M.
    [J]. CHEMICAL SCIENCE, 2017, 8 (01) : 124 - 130
  • [8] Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen
    Campos, Maria
    Siriwatcharapiboon, Wilai
    Potter, Robert J.
    Horswell, Sarah L.
    [J]. CATALYSIS TODAY, 2013, 202 : 135 - 143
  • [9] In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction
    Casalongue, Hernan G. Sanchez
    Ng, May Ling
    Kaya, Sarp
    Friebel, Daniel
    Ogasawara, Hirohito
    Nilsson, Anders
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (28) : 7169 - 7172
  • [10] Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?
    Che, Michel
    [J]. CATALYSIS TODAY, 2013, 218 : 162 - 171