Robust Scale Adaptive Visual Tracking with Correlation Filters

被引:1
作者
Li, Chunbao [1 ]
Yang, Bo [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Sichuan Elect Informat Ind Technol Res Inst Co Lt, Chengdu 610000, Sichuan, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 11期
关键词
computer vision; visual tracking; correlation filter; scale variation; occlusion; high-quality candidate object proposals; OBJECT TRACKING; FUSION;
D O I
10.3390/app8112037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Visual tracking is a challenging task in computer vision due to various appearance changes of the target object. In recent years, correlation filter plays an important role in visual tracking and many state-of-the-art correlation filter based trackers are proposed in the literature. However, these trackers still have certain limitations. Most of existing trackers cannot well deal with scale variation, and they may easily drift to the background in the case of occlusion. To overcome the above problems, we propose a Correlation Filters based Scale Adaptive (CFSA) visual tracker. In the tracker, a modified EdgeBoxes generator, is proposed to generate high-quality candidate object proposals for tracking. The pool of generated candidate object proposals is adopted to estimate the position of the target object using a kernelized correlation filter based tracker with HOG and color naming features. In order to deal with changes in target scale, a scale estimation method is proposed by combining the water flow driven MBD (minimum barrier distance) algorithm with the estimated position. Furthermore, an online updating schema is adopted to reduce the interference of the surrounding background. Experimental results on two large benchmark datasets demonstrate that the CFSA tracker achieves favorable performance compared with the state-of-the-art trackers.
引用
收藏
页数:19
相关论文
共 48 条
[31]   Adaptive Objectness for Object Tracking [J].
Liang, Pengpeng ;
Pang, Yu ;
Liao, Chunyuan ;
Mei, Xue ;
Ling, Haibin .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (07) :949-953
[32]  
Liu T, 2015, PROC CVPR IEEE, P4902, DOI 10.1109/CVPR.2015.7299124
[33]   Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking [J].
Ma, Chao ;
Huang, Jia-Bin ;
Yang, Xiaokang ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (08) :771-796
[34]  
Meshgi K, 2018, IEEE IMAGE PROC, P2700, DOI 10.1109/ICIP.2018.8451725
[35]   Correlation-Based Tracker-Level Fusion for Robust Visual Tracking [J].
Rapuru, Madan Kumar ;
Kakanuru, Sumithra ;
Venugopal, Pallavi M. ;
Mishra, Deepak ;
Subrahmanyam, Gorthi R. K. Sai .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (10) :4832-4842
[36]   Incremental learning for robust visual tracking [J].
Ross, David A. ;
Lim, Jongwoo ;
Lin, Ruei-Sung ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :125-141
[37]   The minimum barrier distance [J].
Strand, Robin ;
Ciesielski, Krzysztof Chris ;
Malmberg, Filip ;
Saha, Punam K. .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (04) :429-437
[38]   Selective Search for Object Recognition [J].
Uijlings, J. R. R. ;
van de Sande, K. E. A. ;
Gevers, T. ;
Smeulders, A. W. M. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) :154-171
[39]   Object Tracking Benchmark [J].
Wu, Yi ;
Lim, Jongwoo ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1834-1848
[40]   Online Object Tracking: A Benchmark [J].
Wu, Yi ;
Lim, Jongwoo ;
Yang, Ming-Hsuan .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2411-2418