Doping Effects in CMOS-compatible CoSi Thin Films for Thermoelectric and Sensor Applications

被引:3
|
作者
Krishna Nichenametla, Charan [1 ]
Calvo, Jesus [1 ]
Riedel, Stefan [1 ]
Gerlich, Lukas [1 ]
Hindenberg, Meike [1 ]
Novikov, Sergej [2 ]
Burkov, Alexander [2 ]
Kozelj, Primoz [3 ]
Cardoso-Gil, Raul [3 ]
Wagner-Reetz, Maik [1 ]
机构
[1] Fraunhofer Inst Photon Mikrosyst, Koenigsbruecker Str 178, D-01099 Dresden, Germany
[2] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[3] Max Planck Inst Chem Phys Fester Stoffe, Noethnitzer Str 40, D-01187 Dresden, Germany
来源
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE | 2020年 / 646卷 / 14期
基金
欧盟地平线“2020”;
关键词
Thermoelectric materials; Silicides; CoSi; Cobalt; Silicidation; CMOS; SILICON;
D O I
10.1002/zaac.202000084
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report on semi-metallic cobalt monosilicide (CoSi) as a CMOS-compatible thermoelectric (TE) material and discuss the effect of n- and p-type dopants on its transport properties. Thin films of CoSi are developed using chemical vapor deposition tools and subsequent rapid thermal processing. Film properties such as microstructure, crystallinity and elemental distribution are studied via electron microscopy, X-ray diffraction and time-of-flight secondary ion mass spectroscopy. Doping silicon with boron prior to silicidation impedes the Co-Si diffusion process, while phosphorus atoms distribute uniformly in silicides with no voids or agglomerations. CoSi makes a suitable n-type TE candidate and provides an alternative to Si or SiGe materials. Transport properties of undoped CoSi exhibit a linear dependence within the investigated temperature window, whereas dopants in CoSi increase the number of electron carriers that contribute to charge transport and thereby influence the Seebeck coefficient. Thus, TE characteristics of thin CoSi films can be tuned via (i) the type of dopants used and/or (ii) varying the residual silicon thickness post silicidation.
引用
收藏
页码:1231 / 1237
页数:7
相关论文
共 39 条
  • [31] Effects of Molybdenum Doping and Annealing on the Physical Properties of In2O3 Thin Films
    Beji, Nasreddine
    Souli, Mehdi
    Reghima, Meriem
    Azzaza, Sonia
    Safia, Alleg
    Kamoun-Turki, Najoua
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (11) : 6628 - 6638
  • [32] Effects of magnesium doping on growth and electric conductivity of nanocrystalline cubic boron nitride thin films
    Kojima, K.
    Nose, K.
    Kambara, M.
    Yoshida, T.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
  • [33] Multilayer Si/Ge thin films with quantum confinement effects for photovoltaic applications
    Shah, Salman Ali
    Khan, Abdul Faheem
    Khan, AsadUllah
    Rahim, N. A.
    Mehmood, Mazhar
    APPLIED SURFACE SCIENCE, 2014, 296 : 185 - 188
  • [35] Effect of heating cycle on cobalt-antimonide-based thin films for high-temperature thermoelectric energy conversion applications
    Ahmed, Aziz
    Han, Seungwoo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 577 - 586
  • [36] Low cross-plane thermal conductivity of sub-1 μm polycrystalline silicon thin films for thermoelectric applications
    Kim, Jihyun
    Cho, Jungwan
    ENERGY CONVERSION AND MANAGEMENT, 2019, 179 : 243 - 248
  • [37] Investigations of the optical and electronic effects of silicon and indium co-doping on ZnO thin films deposited by spray pyrolysis
    Fang, Yiwen
    Dilworth, Jonathan R.
    Pepper, Michael
    Edwards, Peter P.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2020, 75 (1-2): : 23 - 32
  • [38] Effects of Co doping on structure and optical properties of TiO2 thin films prepared by sol-gel method
    Tian, Jianjun
    Deng, Hongmei
    Sun, Lin
    Kong, Hui
    Yang, Pingxiong
    Chu, Junhao
    THIN SOLID FILMS, 2012, 520 (16) : 5179 - 5183
  • [39] Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping
    Jiang, Yue
    Chen, Wen-Fan
    Koshy, Pramod
    Sorrell, Charles Christopher
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (07) : 5266 - 5279