Doping Effects in CMOS-compatible CoSi Thin Films for Thermoelectric and Sensor Applications

被引:3
|
作者
Krishna Nichenametla, Charan [1 ]
Calvo, Jesus [1 ]
Riedel, Stefan [1 ]
Gerlich, Lukas [1 ]
Hindenberg, Meike [1 ]
Novikov, Sergej [2 ]
Burkov, Alexander [2 ]
Kozelj, Primoz [3 ]
Cardoso-Gil, Raul [3 ]
Wagner-Reetz, Maik [1 ]
机构
[1] Fraunhofer Inst Photon Mikrosyst, Koenigsbruecker Str 178, D-01099 Dresden, Germany
[2] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[3] Max Planck Inst Chem Phys Fester Stoffe, Noethnitzer Str 40, D-01187 Dresden, Germany
来源
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE | 2020年 / 646卷 / 14期
基金
欧盟地平线“2020”;
关键词
Thermoelectric materials; Silicides; CoSi; Cobalt; Silicidation; CMOS; SILICON;
D O I
10.1002/zaac.202000084
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report on semi-metallic cobalt monosilicide (CoSi) as a CMOS-compatible thermoelectric (TE) material and discuss the effect of n- and p-type dopants on its transport properties. Thin films of CoSi are developed using chemical vapor deposition tools and subsequent rapid thermal processing. Film properties such as microstructure, crystallinity and elemental distribution are studied via electron microscopy, X-ray diffraction and time-of-flight secondary ion mass spectroscopy. Doping silicon with boron prior to silicidation impedes the Co-Si diffusion process, while phosphorus atoms distribute uniformly in silicides with no voids or agglomerations. CoSi makes a suitable n-type TE candidate and provides an alternative to Si or SiGe materials. Transport properties of undoped CoSi exhibit a linear dependence within the investigated temperature window, whereas dopants in CoSi increase the number of electron carriers that contribute to charge transport and thereby influence the Seebeck coefficient. Thus, TE characteristics of thin CoSi films can be tuned via (i) the type of dopants used and/or (ii) varying the residual silicon thickness post silicidation.
引用
收藏
页码:1231 / 1237
页数:7
相关论文
共 39 条
  • [1] Thermoelectric properties of CoSi thin films
    Adachi, K
    Ito, K
    Zhang, LT
    Yamaguchi, M
    THERMEC'2003, PTS 1-5, 2003, 426-4 : 3445 - 3450
  • [2] CMOS-Compatible Nanowire Sensor Arrays for Detection of Cellular Bioelectricity
    Pui, Tze-Sian
    Agarwal, Ajay
    Ye, Feng
    Balasubramanian, Narayanan
    Chen, Peng
    SMALL, 2009, 5 (02) : 208 - 212
  • [3] Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing
    L. Augel
    F. Berkmann
    D. Latta
    I. A. Fischer
    S. Bechler
    Y. Elogail
    K. Kostecki
    K. Potje-Kamloth
    J. Schulze
    Microfluidics and Nanofluidics, 2017, 21
  • [4] Piezoresistive CMOS-compatible sensor for out-of-plane shear stress
    Lemke, Benjamin
    Baumann, Marc
    Gieschke, Pascal
    Baskaran, Rajashree
    Paul, Oliver
    SENSORS AND ACTUATORS A-PHYSICAL, 2013, 189 : 488 - 495
  • [5] Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing
    Augel, L.
    Berkmann, F.
    Latta, D.
    Fischer, I. A.
    Bechler, S.
    Elogail, Y.
    Kostecki, K.
    Potje-Kamloth, K.
    Schulze, J.
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (11)
  • [6] Piezoelectric aluminum nitride thin films for CMOS compatible MEMS: Sputter deposition and doping
    Sandeep, S.
    Pinto, Rui M. R.
    Rudresh, Jyothilakshmi
    Gund, Ved
    Nagaraja, Kodihalli K.
    Vinayakumar, K. B.
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2025, 50 (02) : 161 - 188
  • [7] CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion
    Turkulets, Yury
    Silber, Amir
    Ripp, Alexander
    Sokolovsky, Mark
    Shalish, Ilan
    APPLIED PHYSICS LETTERS, 2016, 108 (13)
  • [8] A CMOS-compatible and cost-effective room temperature sensitive hydrogen sensor
    Mao, Feilong
    Gui, Jiashu
    Zhu, Yifan
    Zeng, Haohan
    Zhang, Hui
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 418
  • [9] CMOS-Compatible Barometric Pressure Field-Effect Transistor-Type Sensor
    Lee, Chayoung
    Shin, Wonjun
    Jung, Gyuweon
    Park, Jinwoo
    Kim, Donghee
    Choi, Kangwook
    Shin, Hunhee
    Kim, Jae-Joon
    Lee, Jong-Ho
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (03) : 464 - 467
  • [10] CMOS-compatible traction stress sensor for use in high-resolution tactile imaging
    Kane, BJ
    Cutkosky, MR
    Kovacs, GTA
    SENSORS AND ACTUATORS A-PHYSICAL, 1996, 54 (1-3) : 511 - 516