VERTEX OPERATOR ALGEBRAS AND WEAK JACOBI FORMS

被引:14
作者
Krauel, Matthew [1 ]
Mason, Geoffrey [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
Vertex operator algebras; weak Jacobi forms; MODULAR-INVARIANCE; THETA-FUNCTIONS;
D O I
10.1142/S0129167X11007677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a strongly regular vertex operator algebra. For a state h is an element of V-1 satisfying appropriate integrality conditions, we prove that the space spanned by the trace functions Tr-M q(L(0)-c/24)zeta(h(0)) (M a V -module) is a vector-valued weak Jacobi form of weight 0 and a certain index < h, h >/2. We discuss refinements and applications of this result when V is holomorphic, in particular we prove that if g = e(h(0)) is a finite-order automorphism then Tr-V q(L(0)-c/24)g is a modular function of weight 0 on a congruence subgroup of SL2(Z).
引用
收藏
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1996, BONNER MATH SCHRIFTE
[2]   Rational vertex operator algebras are finitely generated [J].
Dong, Chongying ;
Zhang, Wei .
JOURNAL OF ALGEBRA, 2008, 320 (06) :2610-2614
[3]  
Dong CY, 2006, INT MATH RES NOTICES, V2006
[4]  
Dong CY, 2005, PURE APPL MATH Q, V1, P791
[5]   Automorphism groups and derivation algebras of finitely generated vertex operator algebras [J].
Dong, CY ;
Griess, RL .
MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (02) :227-239
[6]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166
[7]  
Dong CY, 2004, INT MATH RES NOTICES, V2004, P2989
[8]   Simple currents and extensions of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) :671-707
[9]   Modular-invariance of trace functions in orbifold theory and generalized moonshine [J].
Dong, CY ;
Li, HS ;
Mason, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :1-56
[10]  
Eichler M., 1985, The theory of Jacobi forms, V55