Theoretical optimization of defect density and band offsets for CsPbI2Br based perovskite solar cells

被引:9
|
作者
Tara, Ayush [1 ]
Bharti, Vishal [2 ]
Sharma, Susheel [1 ]
Gupta, Rockey [1 ]
机构
[1] Univ Jammu, Dept Elect, Jammu, Jammu & Kashmir, India
[2] Cluster Univ Jammu, Sch Sci, Dept Phys, Jammu, Jammu & Kashmir, India
来源
MATERIALS TODAY COMMUNICATIONS | 2022年 / 33卷
关键词
CsPbI2Br; Hole transport layer; Defect density and Band offsets; ALPHA-CSPBI3; PEROVSKITE; PERFORMANCE; LAYERS;
D O I
10.1016/j.mtcomm.2022.104546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stability of Methyl-Ammonium (MA) and Formamidinium (FA) based perovskite solar cells (PSCs) has al-ways been a matter of concern because of volatile nature of organic cations present in them. So, it becomes necessary to replace organic cations with inorganic non-volatile cations. Recently, lot of efforts have been put in to a new class of PSCs, CsPbX3 (where, X = Br, I, Cl etc.) wherein organic cation is replaced by Caesium, to address the stability issue. Despite being more stable than their organic counterparts, the PCE of CsPbI2Br based PSCs is still low as compared to that offered by Methyl-Ammonium (MA) and Formamidinium (FA) based PSCs. In this paper, we have proposed a new CsPbI2Br based PSC structure having n-i-p architecture: FTO/Zn(O0.3, S0.7)/CsPbI2Br/HTL/Au. The proposed structure has been simulated using SCAPS software by employing new ETL Zn(O0.3, S0.7) and various HTLs (spiro-OMeTAD, CuSCN, CuI and MoO3). Initial simulations reveal that the proposed PSC achieves best PCE of 20.36 %, when CuI is used as HTL. The impact of defect density (Nt) in CsPbI2Br layer has been studied for various HTLs and optimum value of Nt obtained as 1.0 x 1011 cm-3. Defect densities at ETL/CsPbI2Br and CsPbI2Br/HTL interfaces have also been optimised at values of 1.0 x 1015 cm-3 and 1.0 x 1015 cm-3 respectively. Finally, VBO and CBO at respective interfaces have also been optimized and the final proposed structure having Zn(O0.3, S0.7) as ETL and CuI as HTL resulted in the PCE of 21.51 % with VOC of 1.55 V, JSC of 15.21 mAcm- 2 and FF of 90.77 %, which are comparable to the Shockley-Queisser limit for CsPbI2Br perovskite solar cells, thereby, considerably enhancing the efficiency of inorganic perovskite solar cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Tailoring C60 for Efficient Inorganic CsPbI2Br Perovskite Solar Cells and Modules
    Liu, Chong
    Yang, Yuzhao
    Zhang, Cuiling
    Wu, Shaohang
    Wei, Liyu
    Guo, Fei
    Arumugam, Gowri Manohari
    Hu, Jinlong
    Liu, Xingyuan
    Lin, Jie
    Schropp, Ruud E., I
    Mai, Yaohua
    ADVANCED MATERIALS, 2020, 32 (08)
  • [22] Synergy of Hydrophobic Surface Capping and Lattice Contraction for Stable and High-Efficiency Inorganic CsPbI2Br Perovskite Solar Cells
    Wang, Haoran
    Bian, Hui
    Jin, Zhiwen
    Liang, Lei
    Bai, Dongliang
    Wang, Qian
    Liu, Shengzhong F.
    SOLAR RRL, 2018, 2 (12):
  • [23] Polar Species Modified Dielectric Constant of CsPbI2Br Perovskite Nanocrystals: Implications for Carbon-Based Perovskite Solar Cells
    Shi, Jialiang
    Deng, Haozhen
    Liu, Fengli
    Li, Ruoshui
    Qiu, Xiaosong
    Tu, Yongsheng
    Wu, Liyu
    Xu, Yuan
    Tian, Jingxu
    Zhu, Chenwei
    Wu, Jihuai
    Lan, Zhang
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14363 - 14371
  • [24] The synergistic effect of defect passivation and energy level adjustment for low-temperature carbon-based CsPbI2Br perovskite solar cells
    Zhang, Xiang
    Zhang, Dan
    Guo, Tonghui
    Zheng, Chunqiu
    Zhou, Yuan
    Jin, Junjun
    Zhu, Zhenkun
    Wang, Zhen
    Cui, Xiaxia
    Wu, Sujuan
    Zhang, Jing
    Tai, Qidong
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (41) : 15573 - 15581
  • [25] Magnesium acetate additive enables efficient and stable carbon electrode based CsPbI2Br perovskite solar cells
    Zhang, Kunming
    Li, Wenhui
    Yu, Jiatao
    Han, Xiuxun
    SOLAR ENERGY, 2021, 222 : 186 - 192
  • [26] All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%
    Liu, Chong
    Li, Wenzhe
    Zhang, Cuiling
    Ma, Yunping
    Fan, Jiandong
    Mai, Yaohua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (11) : 3825 - 3828
  • [27] Perovskite-Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI2Br Solar Cells
    Xie, Pengfei
    Zhang, Guizhi
    Yang, Zechao
    Pan, Zhenxiao
    Fang, Yueping
    Rao, Huashang
    Zhong, Xinhua
    SOLAR RRL, 2020, 4 (11)
  • [28] A customized symmetric passivator to improve the efficiency and stability of inorganic CsPbI2Br perovskite solar cells
    Sabri, Alireza
    Zhang, Chenlong
    Sadrmousavi-Dizaj, Asma
    Duan, Jialong
    Wang, Bo
    RENEWABLE ENERGY, 2025, 241
  • [29] Regulating the Interplay at the Buried Interface for Efficient and Stable Carbon-Based CsPbI2Br Perovskite Solar Cells
    Zhang, Dan
    Zhang, Xiang
    Guo, Tonghui
    Jin, Junjun
    Zou, Junjie
    Zhu, Zhenkun
    Zhou, Yuan
    Cao, Qiang
    Zhang, Jing
    Ren, Zhiwei
    Tai, Qidong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (08) : 10897 - 10906
  • [30] Fully-inorganic strontium incorporated CsPbI2Br perovskite solar cells with promoted efficiency and stability
    Patil, Jyoti V.
    Mali, Sawanta S.
    Hong, Chang Kook
    JOURNAL OF ENERGY CHEMISTRY, 2021, 62 (62): : 451 - 458