An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery

被引:0
|
作者
Tian, Jing [1 ]
Azarian, Michael H. [1 ]
Pecht, Michael [1 ]
Niu, Gang [2 ]
Li, Chuan [3 ]
机构
[1] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD 20742 USA
[2] Tongji Univ, Inst Rail Transit, Shanghai, Peoples R China
[3] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing, Peoples R China
关键词
classification; ensemble learning; fault diagnosis; rotating machinery; EMPIRICAL MODE DECOMPOSITION; SIGNALS; FUSION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis is a major concern of the prognostics and health management of rotating machinery. Current practice in fault diagnosis is often challenged by the non-normality, multimodality, and nonlinearity of machinery health monitoring signals and their extracted features. A single classifier used in fault diagnosis fails when all these challenges exist. Thus, in this paper a hybrid ensemble learning method is developed to combine the capability of different classifiers to address the challenges. Diversity among classifiers is desired because diversified classifiers lead to uncorrelated classifications, which improve classification accuracy. In this paper two methods are used to increase the diversity. First, different algorithms compatible with rotating machinery data are included in the decision ensemble to get the diversity among algorithms. Second, multiple bootstrap samples are generated to increase the diversity among training data. Each algorithm is trained by multiple bootstrap samples to get multiple classifiers. At the end, classifiers are trained from different combinations of algorithms and bootstrap samples. A final classification result is obtained from the majority voting of the classifiers. The method was evaluated by the classification of simulated data and through the fault diagnosis of experimental data of bearings. Results show the method works when the challenges exist and the performance of the method is better than that of individual classifiers.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [41] Multi-fractal Based Fault Diagnosis Method of Rotating Machinery
    Zhang Shuqing
    He Yuzhu
    Zhang Jinmin
    Zhao Yuchun
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 571 - +
  • [42] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [43] Fault Diagnosis Method for Rotating Machinery Based on Intrinsic Component Filtering
    Zhang Z.
    Han B.
    Li S.
    Bao H.
    Wang J.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2024, 44 (01): : 159 - 165
  • [44] Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
    Chen, Zhouliang
    Li, Zhinong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3443 - 3449
  • [45] A NOVEL FAULT DIAGNOSIS METHOD FOR ROTATING MACHINERY BASED ON EEMD AND MCKD
    Lv, Z.-L
    Tang, B.-P
    Zhou, Y.
    Zhou, C.-D
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2015, 14 (03) : 438 - 449
  • [46] A rotating machinery fault diagnosis method based on local mean decomposition
    Cheng, Junsheng
    Yang, Yi
    Yang, Yu
    DIGITAL SIGNAL PROCESSING, 2012, 22 (02) : 356 - 366
  • [47] Compound-Fault Diagnosis of Rotating Machinery: A Fused Imbalance Learning Method
    Zhang, Jingfei
    Zhang, Qinghua
    He, Xiao
    Sun, Guoxi
    Zhou, Donghua
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (04) : 1462 - 1474
  • [48] Machine Learning-Based Fault Diagnosis of Self-Aligning Bearings for Rotating Machinery Using Infrared Thermography
    Mehta, Ankush
    Goyal, Deepam
    Choudhary, Anurag
    Pabla, B. S.
    Belghith, Safya
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [49] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204
  • [50] Application of Deep Learning in Fault Diagnosis of Rotating Machinery
    Jiang, Wanlu
    Wang, Chenyang
    Zou, Jiayun
    Zhang, Shuqing
    PROCESSES, 2021, 9 (06)