An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery

被引:0
|
作者
Tian, Jing [1 ]
Azarian, Michael H. [1 ]
Pecht, Michael [1 ]
Niu, Gang [2 ]
Li, Chuan [3 ]
机构
[1] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD 20742 USA
[2] Tongji Univ, Inst Rail Transit, Shanghai, Peoples R China
[3] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing, Peoples R China
来源
2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN) | 2017年
关键词
classification; ensemble learning; fault diagnosis; rotating machinery; EMPIRICAL MODE DECOMPOSITION; SIGNALS; FUSION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis is a major concern of the prognostics and health management of rotating machinery. Current practice in fault diagnosis is often challenged by the non-normality, multimodality, and nonlinearity of machinery health monitoring signals and their extracted features. A single classifier used in fault diagnosis fails when all these challenges exist. Thus, in this paper a hybrid ensemble learning method is developed to combine the capability of different classifiers to address the challenges. Diversity among classifiers is desired because diversified classifiers lead to uncorrelated classifications, which improve classification accuracy. In this paper two methods are used to increase the diversity. First, different algorithms compatible with rotating machinery data are included in the decision ensemble to get the diversity among algorithms. Second, multiple bootstrap samples are generated to increase the diversity among training data. Each algorithm is trained by multiple bootstrap samples to get multiple classifiers. At the end, classifiers are trained from different combinations of algorithms and bootstrap samples. A final classification result is obtained from the majority voting of the classifiers. The method was evaluated by the classification of simulated data and through the fault diagnosis of experimental data of bearings. Results show the method works when the challenges exist and the performance of the method is better than that of individual classifiers.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [21] An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive
    Shen, Changqing
    Qi, Yumei
    Wang, Jun
    Cai, Gaigai
    Zhu, Zhongkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 76 : 170 - 184
  • [22] An intelligent fault diagnosis method for rotating machinery based on genetic algorithm and classifier ensemble
    Dou, Dongyang
    Xue, Bin
    He, Min
    Jiang, Jian
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4178 - 4181
  • [23] Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
    Lei, Yaguo
    Li, Naipeng
    Lin, Jing
    Wang, Sizhe
    SENSORS, 2013, 13 (12) : 16950 - 16964
  • [24] An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks
    Jiang, Li
    Wu, Lin
    Tian, Yu
    Li, Yibing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (24) : 11600 - 11612
  • [25] A Homogeneous Stacking Ensemble Learning Model for Fault Diagnosis of Rotating Machinery With Small Samples
    Cao, Zhi
    Li, Zhenxiang
    Zhang, Junhua
    Fu, Hongyong
    IEEE SENSORS JOURNAL, 2022, 22 (09) : 8944 - 8959
  • [26] Fault Diagnosis Method for Rotating Machinery Based on Multi-scale Features
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Yao
    Zhu, Rupeng
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2023, 36 (01)
  • [27] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [28] A new fault diagnosis method of rotating machinery
    Chen, Chih-Hao
    Shyu, Rong-Juin
    Ma, Chih-Kao
    SHOCK AND VIBRATION, 2008, 15 (06) : 585 - 598
  • [29] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [30] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763