Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities

被引:435
作者
Liang, Shi-Jun [1 ]
Cheng, Bin [1 ]
Cui, Xinyi [2 ]
Miao, Feng [1 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; photodetectors; spintronic devices; van der Waals heterostructures; vertical transistors; TRANSITION-METAL-DICHALCOGENIDE; FIELD-EFFECT TRANSISTORS; P-N-JUNCTIONS; BLACK PHOSPHORUS; 2-DIMENSIONAL MATERIALS; BROAD-BAND; PHOTOCURRENT GENERATION; EPITAXIAL-GROWTH; TRANSPORT-PROPERTIES; CHARGE-TRANSPORT;
D O I
10.1002/adma.201903800
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The discovery of two-dimensional (2D) materials with unique electronic, superior optoelectronic, or intrinsic magnetic order has triggered worldwide interest in the fields of material science, condensed matter physics, and device physics. Vertically stacking 2D materials with distinct electronic and optical as well as magnetic properties enables the creation of a large variety of van der Waals heterostructures. The diverse properties of the vertical heterostructures open unprecedented opportunities for various kinds of device applications, e.g., vertical field-effect transistors, ultrasensitive infrared photodetectors, spin-filtering devices, and so on, which are inaccessible in conventional material heterostructures. Here, the current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed. The relevant challenges for achieving high-performance devices are presented. An outlook into the future development of vertical heterostructure devices with integrated electronic and optoelectronic as well as spintronic functionalities is also provided.
引用
收藏
页数:27
相关论文
共 230 条
[81]   Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit [J].
Huang, Bevin ;
Clark, Genevieve ;
Navarro-Moratalla, Efren ;
Klein, Dahlia R. ;
Cheng, Ran ;
Seyler, Kyle L. ;
Zhong, Ding ;
Schmidgall, Emma ;
McGuire, Michael A. ;
Cobden, David H. ;
Yao, Wang ;
Xiao, Di ;
Jarillo-Herrero, Pablo ;
Xu, Xiaodong .
NATURE, 2017, 546 (7657) :270-+
[82]   Tunnel field-effect transistors as energy-efficient electronic switches [J].
Ionescu, Adrian M. ;
Riel, Heike .
NATURE, 2011, 479 (7373) :329-337
[83]   Microscopic understanding of magnetic interactions in bilayer CrI3 [J].
Jang, Seung Woo ;
Jeong, Min Yong ;
Yoon, Hongkee ;
Ryee, Siheon ;
Han, Myung Joon .
PHYSICAL REVIEW MATERIALS, 2019, 3 (03)
[84]  
Jariwala D, 2017, NAT MATER, V16, P170, DOI [10.1038/nmat4703, 10.1038/NMAT4703]
[85]   Stacking tunable interlayer magnetism in bilayer CrI3 [J].
Jiang, Peiheng ;
Wang, Cong ;
Chen, Dachuan ;
Zhong, Zhicheng ;
Yuan, Zhe ;
Lu, Zhong-Yi ;
Ji, Wei .
PHYSICAL REVIEW B, 2019, 99 (14)
[86]   Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures [J].
Jiang, Shengwei ;
Li, Lizhong ;
Wang, Zefang ;
Shan, Jie ;
Mak, Kin Fai .
NATURE ELECTRONICS, 2019, 2 (04) :159-163
[87]   Controlling magnetism in 2D CrI3 by electrostatic doping [J].
Jiang, Shengwei ;
Li, Lizhong ;
Wang, Zefang ;
Mak, Kin Fai ;
Shan, Jie .
NATURE NANOTECHNOLOGY, 2018, 13 (07) :549-+
[88]   Electric-field switching of two-dimensional van der Waals magnets [J].
Jiang, Shengwei ;
Shan, Jie ;
Mak, Kin Fai .
NATURE MATERIALS, 2018, 17 (05) :406-+
[89]   Ultrafast dynamics in van der Waals heterostructures [J].
Jin, Chenhao ;
Ma, Eric Yue ;
Karni, Ouri ;
Regan, Emma C. ;
Wang, Feng ;
Heinz, Tony F. .
NATURE NANOTECHNOLOGY, 2018, 13 (11) :994-1003
[90]   Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures [J].
Kamalakar, M. Venkata ;
Dankert, Andre ;
Kelly, Paul J. ;
Dash, Saroj P. .
SCIENTIFIC REPORTS, 2016, 6