Global Well-Posedness and Scattering for Derivative Schrodinger Equation

被引:3
|
作者
Wang, Yuzhao [1 ]
机构
[1] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Besov spaces; Derivative Schrodinger equations; Global well-posedness; Non-elliptic case; Scattering; MANY-BODY SYSTEMS; COHERENT STRUCTURES; CLASSICAL-SOLUTIONS; EXISTENCE; MAPS;
D O I
10.1080/03605302.2011.600798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem for the elliptic and non-elliptic derivative nonlinear Schrodinger equations in higher spatial dimensions (n >= 2) and some global well-posedness results with small initial data in critical Besov spaces B-2,1(s) are obtained. As by-products, the scattering results with small initial data are also obtained.
引用
收藏
页码:1694 / 1722
页数:29
相关论文
共 50 条
  • [1] GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Wu, Yifei
    ANALYSIS & PDE, 2015, 8 (05): : 1101 - 1112
  • [2] Global well-posedness for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Perelman, Galina
    INVENTIONES MATHEMATICAE, 2022, 229 (02) : 639 - 688
  • [3] Global well-posedness and scattering for the derivative nonlinear Schrodinger equation with small rough data
    Wang Baoxiang
    Han Lijia
    Huang Chunyan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2253 - 2281
  • [4] THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION: GLOBAL WELL-POSEDNESS AND SOLITON RESOLUTION
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter
    Sulem, Catherine
    QUARTERLY OF APPLIED MATHEMATICS, 2020, 78 (01) : 33 - 73
  • [5] GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER EQUATION WITH DERIVATIVE IN ENERGY SPACE
    Wu, Yifei
    ANALYSIS & PDE, 2013, 6 (08): : 1989 - 2002
  • [6] Global well-posedness for the derivative non-linear Schrodinger equation
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter A.
    Sulem, Catherine
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (08) : 1151 - 1195
  • [7] A remark on global well-posedness of the derivative nonlinear Schrodinger equation on the circle
    Mosincat, Razvan
    Oh, Tadahiro
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 837 - 841
  • [8] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [9] ON THE WELL-POSEDNESS PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Killip, Rowan
    Ntekoume, Maria
    Visan, Monica
    ANALYSIS & PDE, 2023, 16 (05): : 1245 - 1270
  • [10] Well-posedness for a generalized derivative nonlinear Schrodinger equation
    Hayashi, Masayuki
    Ozawa, Tohru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) : 5424 - 5445