Global Well-Posedness and Scattering for Derivative Schrodinger Equation

被引:3
作者
Wang, Yuzhao [1 ]
机构
[1] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Besov spaces; Derivative Schrodinger equations; Global well-posedness; Non-elliptic case; Scattering; MANY-BODY SYSTEMS; COHERENT STRUCTURES; CLASSICAL-SOLUTIONS; EXISTENCE; MAPS;
D O I
10.1080/03605302.2011.600798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem for the elliptic and non-elliptic derivative nonlinear Schrodinger equations in higher spatial dimensions (n >= 2) and some global well-posedness results with small initial data in critical Besov spaces B-2,1(s) are obtained. As by-products, the scattering results with small initial data are also obtained.
引用
收藏
页码:1694 / 1722
页数:29
相关论文
共 25 条
[1]   Global Schrodinger maps in dimensions d ≥ 2: Small data in the critical Sobolev spaces [J].
Bejenaru, I. ;
Ionescu, A. D. ;
Kenig, C. E. ;
Tataru, D. .
ANNALS OF MATHEMATICS, 2011, 173 (03) :1443-1506
[2]  
Bejenaru I, 2008, J EUR MATH SOC, V10, P957
[3]   Global existence of small solutions to semilinear Schrodinger equations with gauge invariance [J].
Chihara, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (05) :731-753
[4]   The initial value problem for cubic semilinear Schrodinger equations [J].
Chihara, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1996, 32 (03) :445-471
[5]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[6]   EXACT-SOLUTIONS OF THE MULTIDIMENSIONAL DERIVATIVE NONLINEAR SCHRODINGER-EQUATION FOR MANY-BODY SYSTEMS NEAR CRITICALITY [J].
CLARKSON, PA ;
TUSZYNSKI, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :4269-4288
[7]   Schrodinger flow of maps into symplectic manifolds [J].
Ding, WY ;
Wang, YD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (07) :746-755
[8]   COHERENT STRUCTURES IN STRONGLY INTERACTING MANY-BODY SYSTEMS .2. CLASSICAL-SOLUTIONS AND QUANTUM FLUCTUATIONS [J].
DIXON, JM ;
TUSZYNSKI, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (22) :4895-4920
[9]  
Ionescu AD, 2006, DIFFER INTEGRAL EQU, V19, P1271
[10]   Low-regularity Schrodinger maps, II:: global well-posedness in dimensions d ≥ 3 [J].
Ionescu, Alexandru D. ;
Kenig, Carlos E. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :523-559