Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces

被引:10
作者
Boukarou, Aissa [1 ]
Guerbati, Kaddour [1 ]
Zennir, Khaled [2 ]
Alodhaibi, Sultan [2 ]
Alkhalaf, Salem [3 ]
机构
[1] Univ Ghardaia, Lab Math & Sci Appl, Ghardaia 47000, Algeria
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass 51921, Saudi Arabia
[3] Qassim Univ, Coll Sci & Arts, Comp Dept, Ar Rass 51921, Saudi Arabia
关键词
modified Korteweg-de Vries equations; well-posedness; analytic Gevrey spaces; Bourgain spaces; trilinear estimates; time regularity; KDV; DEVRIES; MKDV;
D O I
10.3390/math8050809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Studies of modified Korteweg-de Vries-type equations are of considerable mathematical interest due to the importance of their applications in various branches of mechanics and physics. In this article, using trilinear estimate in Bourgain spaces, we show the local well-posedness of the initial value problem associated with a coupled system consisting of modified Korteweg-de Vries equations for given data. Furthermore, we prove that the unique solution belongs to Gevrey space G(sigma) x G(sigma) in x and G(3 sigma) x G(3 sigma) in t. This article is a continuation of recent studies reflected.
引用
收藏
页数:16
相关论文
共 26 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]   PROPAGATION OF THE ANALYZING CAPABILITY OF SOLUTIONS IN NONLINEAR HYPERBOLIC SYSTEMS [J].
ALINHAC, S ;
METIVIER, G .
INVENTIONES MATHEMATICAE, 1984, 75 (02) :189-204
[3]   Well-posedness of the "good" Boussinesq equation in analytic Gevrey spaces and time regularity [J].
Barostichi, Rafael F. ;
Figueira, Renata O. ;
Himonas, A. Alexandrou .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (05) :3181-3198
[4]   Interaction equations for short and long dispersive waves [J].
Bekiranov, D ;
Ogawa, T ;
Ponce, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :357-388
[5]   On the ill-posedness of the IVP for the generalized Korteweg-DeVries and nonlinear Schrodinger equations [J].
Birnir, B ;
Kenig, CE ;
Ponce, G ;
Svanstedt, N ;
Vega, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 :551-559
[6]  
BOUKAROU A, 2020, REND CIRC MAT P 0425, DOI DOI 10.1007/s11565-020-00340-8
[7]   Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity [J].
Boukarou, Aissa ;
Zennir, Khaled ;
Guerbati, Kaddour ;
Georgiev, Svetlin G. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) :349-364
[8]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P209
[9]   Sharp well-posedness for a coupled system of mKdV-type equations [J].
Carvajal, Xavier ;
Panthee, Mahendra .
JOURNAL OF EVOLUTION EQUATIONS, 2019, 19 (04) :1167-1197
[10]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749