Photobleaching Enables Super-resolution Imaging of the FtsZ Ring in the Cyanobacterium Prochlorococcus

被引:0
|
作者
Zhan, Yuanchao [1 ]
Liu, Yaxin [1 ]
Zeng, Qinglu [1 ,2 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ocean Sci, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Life Sci, Hong Kong, Peoples R China
[3] HKUST Shenzhen Res Inst, Shenzhen, Peoples R China
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2018年 / 141期
基金
中国国家自然科学基金;
关键词
Immunology and Infection; Issue; 141; STORM; photobleaching; cyanobacterium; Prochlorococcus; super-resolution imaging; three-dimensional; FtsZ ring; cell division; OPTICAL RECONSTRUCTION MICROSCOPY;
D O I
10.3791/58603
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Super-resolution microscopy has been widely used to study protein interactions and subcellular structures in many organisms. In photosynthetic organisms, however, the lateral resolution of super-resolution imaging is only similar to 100 nm. The low resolution is mainly due to the high autofluorescence background of photosynthetic cells caused by high-intensity lasers that are required for super-resolution imaging, such as stochastic optical reconstruction microscopy (STORM). Here, we describe a photobleaching-assisted STORM method which was developed recently for imaging the marine picocyanobacterium Prochlorococcus. After photobleaching, the autofluorescence of Prochlorococcus is effectively reduced so that STORM can be performed with a lateral resolution of similar to 10 nm. Using this method, we acquire the in vivo three-dimensional (3-D) organization of the FtsZ protein and characterize four different FtsZ ring morphologies during the cell cycle of Prochlorococcus. The method we describe here might be adopted for the super-resolution imaging of other photosynthetic organisms.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fluorescent Nanoparticles for Super-Resolution Imaging
    Li, Wei
    Schierle, Gabriele S. Kaminski
    Lei, Bingfu
    Liu, Yingliang
    Kaminski, Clemens F.
    CHEMICAL REVIEWS, 2022, : 12495 - 12543
  • [22] Super-resolution imaging in live cells
    Cox, Susan
    DEVELOPMENTAL BIOLOGY, 2015, 401 (01) : 175 - 181
  • [23] Optical Super-Oscillation Enables Sub-Diffraction Focusing and Super-Resolution Imaging in the Far-Field
    Li, Zhu
    Zang, Zhongming
    Hai, Kuo
    Huang, Wen
    Tang, Dongliang
    ANNALEN DER PHYSIK, 2025, 537 (01)
  • [24] Application and Development of Super-resolution Microscopy in Live Cell Imaging
    Zhang Jiao
    He Qin
    Wu Ze-Kai
    Yu Bin
    Qu Jun-Le
    Lin Dan-Ying
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2021, 48 (11) : 1301 - 1315
  • [25] Revealing the carbohydrate pattern on a cell surface by super-resolution imaging
    Chen, Junling
    Gao, Jing
    Wu, Jiazhen
    Zhang, Min
    Cai, Mingjun
    Xu, Haijiao
    Jiang, Junguang
    Tian, Zhiyuan
    Wang, Hongda
    NANOSCALE, 2015, 7 (08) : 3373 - 3380
  • [26] Super-Resolution Imaging of Plasma Membrane Glycans
    Letschert, Sebastian
    Goehler, Antonia
    Franke, Christian
    Bertleff-Zieschang, Nadja
    Memmel, Elisabeth
    Doose, Soeren
    Seibel, Juergen
    Sauer, Markus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (41) : 10921 - 10924
  • [27] Fluorescent dyes for super-resolution imaging of organelles
    Jiang W.
    Xu Z.
    Huagong Xuebao/CIESC Journal, 2024, 75 (04): : 1333 - 1354
  • [28] Correlated confocal and super-resolution imaging by VividSTORM
    Barna, Laszlo
    Dudok, Barna
    Miczan, Vivien
    Horvath, Andras
    Laszlo, Zsofia I.
    Katona, Istvan
    NATURE PROTOCOLS, 2016, 11 (01) : 163 - 183
  • [29] Super-Resolution Imaging with Small Organic Fluorophores
    Heilemann, Mike
    van de Linde, Sebastian
    Mukherjee, Anindita
    Sauer, Markits
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (37) : 6903 - 6908
  • [30] Quantum super-resolution imaging: a review and perspective
    Yue, Xiaoran
    Wu, Hui
    Wang, Jizhou
    He, Zhe
    NANOPHOTONICS, 2025,