Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states

被引:147
作者
Majtey, AP [1 ]
Lamberti, PW [1 ]
Prato, DP [1 ]
机构
[1] Natl Univ Cordoba, FAMAF, Ciudad Univ, CONICET, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.052310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss an alternative to relative entropy as a measure of distance between mixed quantum states. The proposed quantity is an extension to the realm of quantum theory of the Jensen-Shannon divergence (JSD) between probability distributions. The JSD has several interesting properties. It arises in information theory and, unlike the Kullback-Leibler divergence, it is symmetric, always well-defined, and bounded. We show that the quantum JSD shares with the relative entropy most of the physically relevant properties, in particular those required for a "good" quantum distinguishability measure. We relate it to other known quantum distances and we suggest possible applications in the field of the quantum information theory.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification
    Abe, S
    [J]. PHYSICAL REVIEW A, 2003, 68 (03): : 3
  • [2] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [3] Berg C., 1984, HARMONIC ANAL SEMIGR
  • [4] BRADY D, 1998, GEOMETRIC ISSUES FDN
  • [5] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [6] GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 : 786 - 797
  • [7] FURTHER RESULTS ON THE RELATIVE ENTROPY
    DONALD, MJ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 : 363 - 373
  • [8] A new metric for probability distributions
    Endres, DM
    Schindelin, JE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) : 1858 - 1860
  • [9] Cryptographic distinguishability measures for quantum-mechanical states
    Fuchs, CA
    van de Graaf, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) : 1216 - 1227
  • [10] Grosse I, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.041905