Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain

被引:393
|
作者
Maphis, Nicole [1 ]
Xu, Guixiang [2 ]
Kokiko-Cochran, Olga N. [2 ]
Jiang, Shanya [1 ]
Cardona, Astrid [3 ]
Ransohoff, Richard M. [4 ]
Lamb, Bruce T. [2 ]
Bhaskar, Kiran [1 ]
机构
[1] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA
[2] Cleveland Clin, Dept Neurosci, Cleveland, OH 44195 USA
[3] Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA
[4] Biogen Idec Inc, Cambridge, MA 02142 USA
关键词
Alzheimer's disease; tauopathies; tau protein; microglia; neuroinflammation; PROGRESSIVE SUPRANUCLEAR PALSY; ALZHEIMERS-DISEASE; FRACTALKINE-RECEPTOR; TRANSGENIC MICE; MOUSE MODEL; INTERLEUKIN-1-BETA POLYMORPHISMS; CORTICOBASAL DEGENERATION; COMMON VARIANTS; WATER-MAZE; ACTIVATION;
D O I
10.1093/brain/awv081
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Pathological aggregation of tau is a hallmark of Alzheimer's disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1(-/-) mice. Second, CD45(+) microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1(-/-) mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret (R)) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain.
引用
收藏
页码:1738 / 1755
页数:18
相关论文
共 50 条
  • [31] Activated microglia mitigate Aβ-associated tau seeding and spreading
    Gratuze, Maud
    Chen, Yun
    Parhizkar, Samira
    Jain, Nimansha
    Strickland, Michael R.
    Serrano, Javier Remolina
    Colonna, Marco
    Ulrich, Jason D.
    Holtzman, David M.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 218 (08):
  • [32] Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading
    Xu, Yin
    Propson, Nicholas E.
    Du, Shuqi
    Xiong, Wen
    Zheng, Hui
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (27)
  • [33] α-synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease
    Hadi, Fatemeh
    Akrami, Hassan
    Totonchi, Mehdi
    Barzegar, Abdolrazagh
    Nabavi, Seyed Massood
    Shahpasand, Koorosh
    JOURNAL OF NEUROCHEMISTRY, 2021, 157 (03) : 727 - 751
  • [34] Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies
    Lewis, Jada
    Dickson, Dennis W.
    ACTA NEUROPATHOLOGICA, 2016, 131 (01) : 27 - 48
  • [35] Tau protein is essential for stress-induced brain pathology
    Lopes, Sofia
    Vaz-Silva, Joao
    Pinto, Vitor
    Dalla, Christina
    Kokras, Nikolaos
    Bedenk, Benedikt
    Mack, Natalie
    Czisch, Michael
    Almeida, Osborne F. X.
    Sousa, Nuno
    Sotiropoulos, Ioannis
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) : E3755 - E3763
  • [36] Genome-wide RNAseq study of the molecular mechanisms underlying microglia activation in response to pathological tau perturbation in the rTg4510 tau transgenic animal model
    Hong Wang
    Yupeng Li
    John W. Ryder
    Justin T. Hole
    Philip J. Ebert
    David C. Airey
    Hui-Rong Qian
    Benjamin Logsdon
    Alice Fisher
    Zeshan Ahmed
    Tracey K. Murray
    Annalisa Cavallini
    Suchira Bose
    Brian J. Eastwood
    David A. Collier
    Jeffrey L. Dage
    Bradley B. Miller
    Kalpana M. Merchant
    Michael J. O’Neill
    Ronald B. Demattos
    Molecular Neurodegeneration, 13
  • [37] Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders
    Coughlin, David
    Xie, Sharon X.
    Liang, Mendy
    Williams, Andrew
    Peterson, Claire
    Weintraub, Daniel
    McMillan, Corey T.
    Wolk, David A.
    Akhtar, Rizwan S.
    Hurtig, Howard I.
    Coslett, H. Branch
    Hamilton, Roy H.
    Siderowf, Andrew D.
    Duda, John E.
    Rascovsky, Katya
    Lee, Edward B.
    Lee, Virginia M. -Y.
    Grossman, Murray
    Trojanowski, John Q.
    Irwin, David J.
    ANNALS OF NEUROLOGY, 2019, 85 (02) : 259 - 271
  • [38] Trem2 deletion enhances tau dispersion and pathology through microglia exosomes
    Bing Zhu
    Yan Liu
    Spring Hwang
    Kailey Archuleta
    Huijie Huang
    Alex Campos
    Rabi Murad
    Juan Piña-Crespo
    Huaxi Xu
    Timothy Y. Huang
    Molecular Neurodegeneration, 17
  • [39] GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils
    Gibbons, Garrett S.
    Banks, Rachel A.
    Kim, Bumjin
    Xu, Hong
    Changolkar, Lakshmi
    Leight, Susan N.
    Riddle, Dawn M.
    Li, Chi
    Gathagan, Ronald J.
    Brown, Hannah J.
    Zhang, Bin
    Trojanowski, John Q.
    Lee, Virginia M. -Y.
    JOURNAL OF NEUROSCIENCE, 2017, 37 (47): : 11485 - 11494
  • [40] Amyloid-beta and tau pathology following repetitive mild traumatic brain injury
    Edwards, George, III
    Moreno-Gonzalez, Ines
    Soto, Claudio
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 483 (04) : 1137 - 1142