Resolving indexing ambiguities in X-ray free-electron laser diffraction patterns

被引:0
|
作者
Uervirojnangkoorn, Monarin [1 ]
Lyubimov, Artem Y. [2 ]
Zhou, Qiangjun [3 ,4 ,5 ,6 ,7 ]
Weis, William I. [3 ,5 ,6 ]
Brunger, Axel T. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA
[7] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2019年 / 75卷
关键词
serial crystallography; indexing ambiguity; XFELs; FEMTOSECOND CRYSTALLOGRAPHY; POST-REFINEMENT; PARTIALITY; CRYSTALS;
D O I
10.1107/S2059798318013177
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Processing X-ray free-electron laser (XFEL) diffraction images poses challenges, as an XFEL pulse is powerful enough to destroy or damage the diffracting volume and thereby yields only one diffraction image per volume. Moreover, the crystal is stationary during the femtosecond pulse, so reflections are generally only partially recorded. Therefore, each XFEL diffraction image must be scaled individually and, ideally, corrected for partiality prior to merging. An additional complication may arise owing to indexing ambiguities when the symmetry of the Bravais lattice is higher than that of the space group, or when the unit-cell dimensions are similar to each other. Here, an automated method is presented that diagnoses these indexing ambiguities based on the Brehm-Diederichs algorithm [Brehm & Diederichs (2014), Acta Cryst. D70, 101-109] and produces a consistent indexing choice for the large majority of diffraction images. This method was applied to an XFEL diffraction data set measured from crystals of the neuronal SNARE-complexin-1-synaptotagmin-1 complex. After correcting the indexing ambiguities, substantial improvements were observed in the merging statistics and the atomic model refinement R values. This method should be a useful addition to the arsenal of tools for the processing of XFEL diffraction data sets.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 50 条
  • [31] XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter
    Jurek, Zoltan
    Son, Sang-Kil
    Ziaja, Beata
    Santra, Robin
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 : 1048 - 1056
  • [32] In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?
    Gallat, Francois-Xavier
    Matsugaki, Naohiro
    Coussens, Nathan P.
    Yagi, Koichiro J.
    Boudes, Marion
    Higashi, Tetsuya
    Tsuji, Daisuke
    Tatano, Yutaka
    Suzuki, Mamoru
    Mizohata, Eiichi
    Tono, Kensuke
    Joti, Yasumasa
    Kameshima, Takashi
    Park, Jaehyun
    Song, Changyong
    Hatsui, Takaki
    Yabashi, Makina
    Nango, Eriko
    Itoh, Kohji
    Coulibaly, Fasseli
    Tobe, Stephen
    Ramaswamy, S.
    Stay, Barbara
    Iwata, So
    Chavas, Leonard M. G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1647)
  • [33] Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser
    Nass, Karol
    Bacellar, Camila
    Cirelli, Claudio
    Dworkowski, Florian
    Gevorkov, Yaroslav
    James, Daniel
    Johnson, Philip J. M.
    Kekilli, Demet
    Knopp, Gregor
    Martiel, Isabelle
    Ozerov, Dmitry
    Tolstikova, Alexandra
    Vera, Laura
    Weinert, Tobias
    Yefanov, Oleksandr
    Standfuss, Joerg
    Reiche, Sven
    Milne, Christopher J.
    IUCRJ, 2021, 8 : 905 - 920
  • [34] RADDOSE-XFEL: femtosecond time-resolved dose estimates for macromolecular X-ray free-electron laser experiments
    Dickerson, Joshua L.
    McCubbin, Patrick T. N.
    Garman, Elspeth F.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 : 549 - 560
  • [35] Co-crystal structure of the iMango-III fluorescent RNA aptamer using an X-ray free-electron laser
    Trachman, Robert J., III
    Stagno, Jason R.
    Conrad, Chelsie
    Jones, Christopher P.
    Fischer, Pontus
    Meents, Alke
    Wang, Yun-Xing
    Ferre-D'Amare, Adrian R.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2019, 75 : 547 - 551
  • [36] Cryo-coherent diffractive imaging of biological samples with X-ray free-electron lasers
    Jiang, Huaidong
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 : 177 - 178
  • [37] Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
    Lyubimov, Artem Y.
    Uervirojnangkoorn, Monarin
    Zeldin, Oliver B.
    Zhou, Qiangjun
    Zhao, Minglei
    Brewster, Aaron S.
    Michels-Clark, Tara
    Holton, James M.
    Sauter, Nicholas K.
    Weis, William I.
    Brunger, Axel T.
    ELIFE, 2016, 5
  • [38] Interpretation of X-ray diffraction patterns of (nuclear) graphite
    Zhou, Z.
    Bouwman, W. G.
    Schut, H.
    Pappas, C.
    CARBON, 2014, 69 : 17 - 24
  • [39] Real-time analysis of liquid jet sample delivery stability for an X-ray free-electron laser using machine vision
    Patel, Jaydeep
    Round, Adam
    de Wijn, Raphael
    Vakili, Mohammad
    Giovanetti, Gabriele
    Monrroy Vilan e Melo, Diogo Filipe
    E, Juncheng
    Sikorski, Marcin
    Koliyadu, Jayanth
    Koua, Faisal H. M.
    Sato, Tokushi
    Mancuso, Adrian
    Peele, Andrew
    Abbey, Brian
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2024, 57 : 1859 - 1870
  • [40] Fourth-Generation Synchrotron Radiation Source with X-ray Free-Electron Laser SILA: Concept of Accelerator-Storage Complex
    Kovalchuk, M., V
    Blagov, A. E.
    Naraikin, O. S.
    Marchenkov, N., V
    Senin, R. A.
    Targonskii, A., V
    CRYSTALLOGRAPHY REPORTS, 2022, 67 (05) : 676 - 683