Rhizosphere feedbacks in elevated CO2

被引:3
|
作者
Cheng, WX [1 ]
机构
[1] Univ Nevada, Desert Res Inst, Ctr Biol Sci, Reno, NV 89506 USA
关键词
competition hypothesis; forest ecosystem; nitrogen; preferential substrate utilization hypothesis; priming effect hypothesis;
D O I
暂无
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Understanding rhizosphere processes in relation to increasing atmospheric CO2 concentrations is important for predicting the response of forest ecosystems to environmental changes, because rhizosphere processes are intimately linked with nutrient cycling and soil organic matter decomposition, both of which feedback to tree growth and soil carbon storage. Plants grown in elevated CO2 substantially increase C input to the rhizosphere. Although it is known that elevated CO2 enhances rhizosphere respiration more than it enhances root biomass, the fate and function of this extra carbon input to the rhizosphere in response to elevated CO2 are not clear. Depending on specific plant and soil conditions, the increased carbon input to the rhizosphere can result in an increase, a decrease, or no effect on soil organic matter decomposition and nutrient mineralization. Three mechanisms may account for these inconsistent results: (1) the "preferential substrate utilization" hypothesis; (2) the "priming effect" hypothesis; and (3) the "competition" hypothesis, i.e., competition for mineral nutrients between plants and soil microorganisms. A microbial growth model is developed that quantitatively links the increased rhizosphere input in response to elevated CO2 with soil organic matter decomposition. The model incorporates the three proposed mechanisms, and simulates the complexity of the rhizosphere processes. The model also illustrates mechanistically the interactions among nitrogen availability, substrate quality, and microbial dynamics when the system is exposed to elevated CO2.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [31] LEAF AND CANOPY RESPONSES TO ELEVATED CO2 IN A PINE FOREST UNDER FREE-AIR CO2 ENRICHMENT
    ELLSWORTH, DS
    OREN, R
    HUANG, C
    PHILLIPS, N
    HENDREY, GR
    OECOLOGIA, 1995, 104 (02) : 139 - 146
  • [32] Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms
    Lin, GH
    Ehleringer, JR
    Rygiewicz, PT
    Johnson, MG
    Tingey, DT
    GLOBAL CHANGE BIOLOGY, 1999, 5 (02) : 157 - 168
  • [34] Elevated CO2 Alters the Physiological and Transcriptome Responses of Pinus densiflora to Long-Term CO2 Exposure
    Kim, Tae-Lim
    Lim, Hyemin
    Chung, Hoyong
    Veerappan, Karpagam
    Oh, Changyoung
    PLANTS-BASEL, 2022, 11 (24):
  • [35] Constraints to nitrogen acquisition of terrestrial plants under elevated CO2
    Feng, Zhaozhong
    Ruetting, Tobias
    Pleijel, Hakan
    Wallin, Goeran
    Reich, Peter B.
    Kammann, Claudia I.
    Newton, Paul C. D.
    Kobayashi, Kazuhiko
    Luo, Yunjian
    Uddling, Johan
    GLOBAL CHANGE BIOLOGY, 2015, 21 (08) : 3152 - 3168
  • [36] Elevated CO2 and virus infection impacts wheat and aphid metabolism
    Vassiliadis, Simone
    Plummer, Kim M.
    Powell, Kevin S.
    Rochfort, Simone J.
    METABOLOMICS, 2018, 14 (10)
  • [37] Effects of elevated atmospheric CO2 on two southern forest diseases
    Runion, G. B.
    Prior, S. A.
    Rogers, H. H.
    Mitchell, R. J.
    NEW FORESTS, 2010, 39 (03) : 275 - 285
  • [38] Responses of soil microbial activity to cadmium pollution and elevated CO2
    Chen, Yi Ping
    Liu, Qiang
    Liu, Yong Jun
    Jia, Feng An
    He, Xin Hua
    SCIENTIFIC REPORTS, 2014, 4
  • [39] Some effects of topographic aspect on grassland responses to elevated CO2
    Lieffering, Mark
    Newton, Paul C. D.
    Brock, Shona C.
    Theobald, Phillip W.
    PLANT PRODUCTION SCIENCE, 2019, 22 (03) : 345 - 351
  • [40] Plant biomass responses to elevated CO2 are mediated by phosphorus uptake
    Han, Ximei
    Zhou, Guiyao
    Luo, Qin
    Ferlian, Olga
    Zhou, Lingyan
    Meng, Jingjing
    Qi, Yuan
    Pei, Jianing
    He, Yanghui
    Liu, Ruiqiang
    Du, Zhenggang
    Long, Jilan
    Zhou, Xuhui
    Eisenhauer, Nico
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863