Orbital and spin angular momentum in conical diffraction

被引:93
|
作者
Berry, MV
Jeffrey, MR
Mansuripur, M
机构
[1] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2005年 / 7卷 / 11期
关键词
polarization; crystal optics; singularities;
D O I
10.1088/1464-4258/7/11/011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The angular momentum J(inc) of a light beam can be changed by passage through a slab of crystal. When the beam is incident along the optic axis of a biaxial crystal, which may also possess optical activity (chirality), the final angular momentum J can have both orbital (J(orb)) and spin (J(sp)) contributions, which we calculate paraxially exactly for arbitrary biaxiality and chirality and initially uniformly polarized beams with circular symmetry. For the familiar special case of a non-chiral crystal with fully developed conical-refraction rings, J is purely orbital and equal to J(inc/2), reflecting an interesting singularity structure in the beam. Explicit formulas and numerical computations are presented for a Gaussian incident beam. The change in angular momentum results in a torque on the crystal, along the axis of the incident beam. An additional, much larger, torque, about an axis lying in the slab, arises from the offset of the cone of conical refraction relative to the incident beam.
引用
收藏
页码:685 / 690
页数:6
相关论文
共 50 条
  • [21] Orbital angular momentum light in microscopy
    Ritsch-Marte, Monika
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2087):
  • [22] Interference Generation of a Reverse Energy Flow with Varying Orbital and Spin Angular Momentum Density
    Ustinov, Andrey V.
    Porfirev, Alexey P.
    Khonina, Svetlana N.
    PHOTONICS, 2024, 11 (10)
  • [23] Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal
    Zhu, Wenguo
    She, Weilong
    OPTICS EXPRESS, 2012, 20 (23): : 25876 - 25883
  • [24] Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation
    Li, Guixin
    Wu, Lin
    Li, King F.
    Chen, Shumei
    Schlickriede, Christian
    Xu, Zhengji
    Huang, Siya
    Li, Wendi
    Liu, Yanjun
    Pun, Edwin Y. B.
    Zentgraf, Thomas
    Cheah, Kok W.
    Luo, Yu
    Zhang, Shuang
    NANO LETTERS, 2017, 17 (12) : 7974 - 7979
  • [25] Visualizing orbital angular momentum of plasmonic vortices
    Shen, Z.
    Hu, Z. J.
    Yuan, G. H.
    Min, C. J.
    Fang, H.
    Yuan, X-C.
    OPTICS LETTERS, 2012, 37 (22) : 4627 - 4629
  • [26] Orbital angular momentum in radio: Measurement methods
    Mohammadi, Siavoush M.
    Daldorff, Lars K. S.
    Forozesh, Kamyar
    Thide, Bo
    Bergman, Jan E. S.
    Isham, Brett
    Karlsson, Roger
    Carozzi, T. D.
    RADIO SCIENCE, 2010, 45
  • [27] Origins and demonstrations of electrons with orbital angular momentum
    McMorran, Benjamin J.
    Agrawal, Amit
    Ercius, Peter A.
    Grillo, Vincenzo
    Herzing, Andrew A.
    Harvey, Tyler R.
    Linck, Martin
    Pierce, Jordan S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2087):
  • [28] A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum
    Zhao, Xuesi
    Feng, Xue
    Liu, Fang
    Cui, Kaiyu
    Zhang, Wei
    Huang, Yidong
    ACS PHOTONICS, 2020, 7 (01) : 212 - 220
  • [29] Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams
    Angelsky, O. V.
    Bekshaev, A. Ya
    Maksimyak, P. P.
    Maksimyak, A. P.
    Hanson, S. G.
    Zenkova, C. Yu
    OPTICS EXPRESS, 2012, 20 (04): : 3563 - 3571
  • [30] Implementing the Deutsch's algorithm with spin-orbital angular momentum of photon without interferometer
    Zhang, Pei
    Jiang, Yan
    Liu, Rui-Feng
    Gao, Hong
    Li, Hong-Rong
    Li, Fu-Li
    OPTICS COMMUNICATIONS, 2012, 285 (05) : 838 - 841