Symmetries and Their Lie Algebra of a Variable Coefficient Korteweg-de Vries Hierarchy

被引:4
|
作者
Zhu, Xiaoying [1 ]
Zhang, Dajun [2 ]
机构
[1] Shandongjianzhu Univ, Coll Sci, Jinan 250101, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
vcKdV hierarchies; Symmetries; Lie algebra; AUTO-BACKLUND TRANSFORMATION; EVOLUTION-EQUATIONS; MASTER SYMMETRIES; LAX OPERATORS; KDV EQUATION;
D O I
10.1007/s11401-016-1020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isospectral and non-isospectral hierarchies related to a variable coefficient Painleve integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条
  • [41] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [42] Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation
    Zhao, H. Q.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):
  • [43] Korteweg-de Vries hierarchy as an asymptotic limit of the Boussinesq system
    Kordyukova, S. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (02) : 250 - 259
  • [44] On the q-deformed modified Korteweg-de Vries hierarchy
    Tu, MH
    Lee, CR
    PHYSICS LETTERS A, 2000, 266 (2-3) : 155 - 159
  • [45] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [46] Soliton, rational and special solutions of the Korteweg-de Vries hierarchy
    Kudryashov, Nikolai A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1774 - 1779
  • [47] Korteweg-de Vries hierarchy using the method of base equations
    Chakrabarti, S
    Pal, J
    Talukdar, B
    PRAMANA-JOURNAL OF PHYSICS, 2002, 58 (03): : 443 - 448
  • [48] Parametric Korteweg-de Vries Hierarchy and Hyperelliptic Sigma Functions
    Bunkova, E. Yu.
    Bukhshtaber, V. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (03) : 169 - 187
  • [49] Korteweg-de Vries hierarchy using the method of base equations
    Subhendu Chakrabarti
    J Pal
    B Talukdar
    Pramana, 2002, 58 : 443 - 448
  • [50] The coupled modified Korteweg-de Vries equations: Similarity reduction, Lie-Backlund symmetries and integrability
    Sahadevan, R
    Kannagi, N
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (06) : 3133 - 3146