Symmetries and Their Lie Algebra of a Variable Coefficient Korteweg-de Vries Hierarchy

被引:4
|
作者
Zhu, Xiaoying [1 ]
Zhang, Dajun [2 ]
机构
[1] Shandongjianzhu Univ, Coll Sci, Jinan 250101, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
vcKdV hierarchies; Symmetries; Lie algebra; AUTO-BACKLUND TRANSFORMATION; EVOLUTION-EQUATIONS; MASTER SYMMETRIES; LAX OPERATORS; KDV EQUATION;
D O I
10.1007/s11401-016-1020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isospectral and non-isospectral hierarchies related to a variable coefficient Painleve integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条
  • [31] Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation
    H. Q. Zhao
    The European Physical Journal B, 2012, 85
  • [32] Change of Polarity for Periodic Waves in the Variable-Coefficient Korteweg-de Vries Equation
    Grimshaw, Roger
    STUDIES IN APPLIED MATHEMATICS, 2015, 134 (03) : 363 - 371
  • [33] Multisoliton and general Wronskian solutions of a variable-coefficient Korteweg-de Vries equation
    Zhao, Hai-qiong
    Zhou, Tong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19074 - 19082
  • [34] DISCRETE SINGULAR CONVOLUTION FOR THE GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Mare, Eben
    Mba, Jules Clement
    Pindza, Edson
    QUAESTIONES MATHEMATICAE, 2017, 40 (02) : 225 - 244
  • [35] On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids
    Tian, Shou-Fu
    Zhang, Hong-Qing
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (03) : 212 - 246
  • [36] Korteweg-de Vries hierarchy as an asymptotic limit of the Boussinesq system
    S. A. Kordyukova
    Theoretical and Mathematical Physics, 2008, 154 : 250 - 259
  • [37] THE KORTEWEG-DE VRIES HIERARCHY AND LONG WATER-WAVES
    KRAENKEL, RA
    MANNA, MA
    PEREIRA, JG
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) : 307 - 320
  • [38] Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy
    Beccaria, Matteo
    Gutperle, Michael
    Li, Yi
    Macorini, Guido
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [39] Generation of secondary solitary waves in the variable-coefficient Korteweg-de Vries equation
    Grimshaw, RHJ
    Pudjaprasetya, SR
    STUDIES IN APPLIED MATHEMATICS, 2004, 112 (03) : 271 - 279
  • [40] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626