Symmetries and Their Lie Algebra of a Variable Coefficient Korteweg-de Vries Hierarchy

被引:4
|
作者
Zhu, Xiaoying [1 ]
Zhang, Dajun [2 ]
机构
[1] Shandongjianzhu Univ, Coll Sci, Jinan 250101, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
vcKdV hierarchies; Symmetries; Lie algebra; AUTO-BACKLUND TRANSFORMATION; EVOLUTION-EQUATIONS; MASTER SYMMETRIES; LAX OPERATORS; KDV EQUATION;
D O I
10.1007/s11401-016-1020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isospectral and non-isospectral hierarchies related to a variable coefficient Painleve integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条
  • [21] Acoustic scattering and the extended Korteweg-de Vries hierarchy
    Beals, R
    Sattinger, DH
    Szmigielski, J
    ADVANCES IN MATHEMATICS, 1998, 140 (02) : 190 - 206
  • [22] Solitons of the complex modified Korteweg-de Vries hierarchy
    Kudryashov, Nikolay A.
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [23] LIE-ALGEBRAS AND KORTEWEG-DE VRIES EQUATIONS
    KUPERSHMIDT, BA
    PHYSICA D, 1987, 27 (03): : 294 - 310
  • [24] A new explicit expression for the Korteweg-de Vries hierarchy
    Avramidi, I
    Schimming, R
    MATHEMATISCHE NACHRICHTEN, 2000, 219 : 45 - 64
  • [25] THE REDUCTIVE PERTURBATION METHOD AND THE KORTEWEG-DE VRIES HIERARCHY
    KRAENKEL, RA
    PEREIRA, JG
    MANNA, MA
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 389 - 403
  • [26] On the Backlund transformation for the Moyal Korteweg-de Vries hierarchy
    Tu, MH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44): : L623 - L629
  • [27] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [28] On the calculation of the timing shifts in the variable-coefficient Korteweg-de Vries equation
    Triki, Houria
    Taha, Thiab R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 212 - 222
  • [29] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [30] Determination of an unknown coefficient in the Korteweg-de Vries equation
    Sang, Lin
    Qiao, Yan
    Wu, Hua
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (06): : 1277 - 1289