Symmetries and Their Lie Algebra of a Variable Coefficient Korteweg-de Vries Hierarchy

被引:4
|
作者
Zhu, Xiaoying [1 ]
Zhang, Dajun [2 ]
机构
[1] Shandongjianzhu Univ, Coll Sci, Jinan 250101, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
vcKdV hierarchies; Symmetries; Lie algebra; AUTO-BACKLUND TRANSFORMATION; EVOLUTION-EQUATIONS; MASTER SYMMETRIES; LAX OPERATORS; KDV EQUATION;
D O I
10.1007/s11401-016-1020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isospectral and non-isospectral hierarchies related to a variable coefficient Painleve integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条