On the classification of four-dimensional gradient Ricci solitons

被引:2
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ,3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Classification; Four dimension; Gradient Ricci solitons; Divergence -free curvature; ROTATIONAL SYMMETRY; RIGIDITY;
D O I
10.1016/j.difgeo.2022.101936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some classification results for four-dimensional gradient Ricci solitons. For a four-dimensional gradient shrinking Ricci soliton with div4Rm +/- = 0, we show that it is either Einstein or a finite quotient of R4, S2 x R2 or S3 x R. The same result can be obtained under the condition of div4W +/- = 0. We also present some classification results of four-dimensional complete non-compact gradient expanding Ricci soliton with non-negative Ricci curvature and gradient steady Ricci solitons under certain curvature conditions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Three-dimensional Steady Gradient Ricci Solitons with Linear Curvature Decay [J].
Deng, Yuxing ;
Zhu, Xiaohua .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (04) :1108-1124
[42]   O(2)-symmetry of 3D steady gradient Ricci solitons [J].
Lai, Yi .
GEOMETRY & TOPOLOGY, 2025, 29 (02) :687-789
[43]   ON THE CLASSIFICATION OF RATIONAL FOUR-DIMENSIONAL UNITAL DIVISION ALGEBRAS [J].
Hammarhjelm, Gustav .
COLLOQUIUM MATHEMATICUM, 2020, 162 (02) :235-244
[44]   Gradient shrinking Ricci solitons of half harmonic Weyl curvature [J].
Wu, Jia-Yong ;
Wu, Peng ;
Wylie, William .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
[45]   On the Potential Function of Gradient Steady Ricci Solitons [J].
Wu, Peng .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) :221-228
[46]   Gradient Ricci solitons with vanishing conditions on Weyl [J].
Catino, G. ;
Mastrolia, P. ;
Monticelli, D. D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01) :1-13
[47]   Volume Growth Estimates of Gradient Ricci Solitons [J].
Chan, Pak-Yeung ;
Ma, Zilu ;
Zhang, Yongjia .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
[48]   CURVATURE ESTIMATES FOR GRADIENT EXPANDING RICCI SOLITONS [J].
Zhang, Liangdi .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) :537-557
[49]   Gradient Ricci Solitons with Structure of Warped Product [J].
de Sousa, Marcio Lemes ;
Pina, Romildo .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :825-840
[50]   Invariant solutions for gradient Ricci almost solitons [J].
Benedito Leandro ;
Romildo Pina ;
Tatiana Pires Fleury Bezerra .
São Paulo Journal of Mathematical Sciences, 2020, 14 :123-138