On the classification of four-dimensional gradient Ricci solitons

被引:2
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ,3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Classification; Four dimension; Gradient Ricci solitons; Divergence -free curvature; ROTATIONAL SYMMETRY; RIGIDITY;
D O I
10.1016/j.difgeo.2022.101936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some classification results for four-dimensional gradient Ricci solitons. For a four-dimensional gradient shrinking Ricci soliton with div4Rm +/- = 0, we show that it is either Einstein or a finite quotient of R4, S2 x R2 or S3 x R. The same result can be obtained under the condition of div4W +/- = 0. We also present some classification results of four-dimensional complete non-compact gradient expanding Ricci soliton with non-negative Ricci curvature and gradient steady Ricci solitons under certain curvature conditions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Invariant solutions for gradient Ricci almost solitons [J].
Leandro, Benedito ;
Pina, Romildo ;
Fleury Bezerra, Tatiana Pires .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01) :123-138
[32]   On a Classification of 4-d Gradient Ricci Solitons with HarmonicWeyl Curvature [J].
Kim, Jongsu .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :986-1012
[33]   On classification of four-dimensional nilpotent Leibniz algebras [J].
Demir, Ismail ;
Misra, Kailash C. ;
Stitzinger, Ernie .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) :1012-1018
[34]   Some Results on Conformal Geometry of Gradient Ricci Solitons [J].
Silva Filho, J. F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04) :937-955
[35]   GEOMETRIC INEQUALITIES AND RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS [J].
Wu, Jia-Yong .
ASIAN JOURNAL OF MATHEMATICS, 2024, 28 (05) :549-580
[36]   ON SHRINKING GRADIENT RICCI SOLITONS WITH NONNEGATIVE SECTIONAL CURVATURE [J].
Cai, Mingliang .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (01) :61-76
[37]   On Gradient Shrinking and Expanding Kähler–Ricci Solitons [J].
Liangdi Zhang .
Mediterranean Journal of Mathematics, 2022, 19
[38]   RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS [J].
Yang, Fei ;
Zhang, Liangdi .
ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) :533-547
[39]   On Gradient Shrinking and Expanding Kahler-Ricci Solitons [J].
Zhang, Liangdi .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
[40]   Classification of paroxysmal events and the four-dimensional epilepsy classification system [J].
Luders, Hans ;
Vaca, Guadalupe Fernandez-Baca ;
Akamatsu, Naoki ;
Amina, Shahram ;
Arzimanoglou, Alexis ;
Baumgartner, Christoph ;
Benbadis, Selim R. ;
Bleasel, Andrew ;
Bermeo-Ovalle, Adriana ;
Bozorgi, Alireza ;
Carreno, Mar ;
Devereaux, Michael ;
Francione, Stefano ;
Losarcos, Naiara Garcia ;
Hamer, Hajo ;
Holthausen, Hans ;
Jamal-Omidi, Shirin ;
Kalamangalam, Giri ;
Kanner, Andres M. ;
Knake, Susanne ;
Lacuey, Nuria ;
Lhatoo, Samden ;
Lim, Shih Hui ;
Londono, Luisa V. ;
Mani, Jayanti ;
Matsumoto, Riki ;
Miller, Jonathan P. ;
Noachtar, Soheyl ;
Palmini, Andre ;
Park, Jun ;
Rosenow, Felix ;
Shahid, Asim ;
Schuele, Stephan ;
Steinhoff, Bernhard J. ;
Szabo, Charles Akos ;
Tandon, Nitin ;
Terada, Kiyohito ;
Boas, Walter van Emde ;
Widdess-Walsh, Peter ;
Kahane, Philippe .
EPILEPTIC DISORDERS, 2019, 21 (01) :1-29