PHASE TRANSITIONS IN THE DYNAMIC MODE DECOMPOSITION ALGORITHM

被引:0
作者
Prasadan, Arvind [1 ]
Lodhia, Asad [2 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019) | 2019年
关键词
Dynamic Mode Decomposition; Singular Value Decomposition; Random Matrix Theory; Source Separation; Time Series; SPECTRAL-ANALYSIS; APPROXIMATION; MATRIX;
D O I
10.1109/camsap45676.2019.9022604
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the Dynamic Mode Decomposition (DMD) algorithm in the noisy data setting. Previous work has shown that DMD is a source separation algorithm in disguise, i.e., that it is capable of unmixing linearly mixed time series. In this work, we analyze the performance of DMD when the mixed time series are corrupted by noise. We demonstrate that a pre-processing step of the truncated SVD before applying DMD yields significant benefits, and quantify the performance of the truncated-SVD-plus-DMD (tSVD-DMD) algorithm using tools from random matrix theory. We validate our findings with numerical simulations.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 50 条
  • [21] Applications of the dynamic mode decomposition
    P. J. Schmid
    L. Li
    M. P. Juniper
    O. Pust
    Theoretical and Computational Fluid Dynamics, 2011, 25 : 249 - 259
  • [22] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [23] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [24] A characteristic dynamic mode decomposition
    Jörn Sesterhenn
    Amir Shahirpour
    Theoretical and Computational Fluid Dynamics, 2019, 33 : 281 - 305
  • [25] Statistical modeling and an adaptive averaging technique for strong convergence of the dynamic mode decomposition
    Aishima, Kensuke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 417
  • [26] Bayesian Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Tabei, Yasuo
    Yairi, Takehisa
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2814 - 2821
  • [27] OPTIMAL LOW-RANK DYNAMIC MODE DECOMPOSITION
    Heas, Patrick
    Herzet, Cedric
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4456 - 4460
  • [28] Dynamic Mode Decomposition based feature for Image Classification
    Rahul-Vigneswaran, K.
    Sachin-Kumar, S.
    Mohan, Neethu
    Soman, K. P.
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 745 - 750
  • [29] Koopman analysis by the dynamic mode decomposition in wind engineering
    Li, Cruz Y.
    Chen, Zengshun
    Zhang, Xuelin
    Tse, Tim K. T.
    Lin, Chongjia
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 232
  • [30] Variable Projection Methods for an Optimized Dynamic Mode Decomposition
    Askham, Travis
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 380 - 416