Magnetic Anisotropy and Switching Behavior of Fe3O4/CoFe2O4 Core/Shell Nanoparticles

被引:6
|
作者
Das, R. [1 ]
Robles, J. [1 ]
Glassell, M. [1 ]
Kalappattil, V. [1 ]
Phan, M. H. [1 ]
Srikanth, H. [1 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Core/shell nanoparticle; magnetic anisotropy; magnetic switching;
D O I
10.1007/s11664-018-6778-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A uniform core/shell nanoparticle system composed of a soft magnetic core (Fe3O4) and a hard magnetic shell (CoFe2O4) was synthesized and characterized to understand how the shell influences the magnetism and exchange coupling of the system. In the case of Fe3O4(8 nm)/CoFe2O4(2 nm) core/shell nanoparticles, DC and AC susceptibility measurements revealed three features associated with the blocking temperatures of the core/shell system (TB-cs similar to 300K), the CoFe2O4 shell (TB-s similar to 200K), and the Fe3O4 core (TB-c similar to 50K). Radio-frequency transverse susceptibility gave a direct probe of the effective magnetic anisotropy field (H-K) and switching field (H-S), as well as their temperature evolutions. Interestingly, we found that H-K of the core/shell structure increased with decreasing temperature. H-S was observed only below TB-s, which first decreased drastically with lowering temperature and then increased sharply below TB-c. This is attributed to the effect of a coercive field of CoFe2O4 on the spin flipping of Fe3O4 in the superparamagnetic state (TB-c < T < TB-s) and the blocked state (T < TB-c), respectively. Our study sheds light on the magnetic exchange coupling mechanism in core/shell nanoparticle systems and demonstrates the possibility of controlling the nanomagnetism of a soft magnetic core to which the hard magnetic shell is coupled in such systems.
引用
收藏
页码:1461 / 1466
页数:6
相关论文
共 50 条
  • [21] Fe3O4 AND CoFe2O4 NANOPARTICLES STABILIZED IN SODIUM ALGINATE POLYMER
    Covaliu, Cristina Ileana
    Matei, Cristian
    Ianculescu, Adelina
    Jitaru, Ioana
    Berger, Daniela
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2009, 71 (04): : 53 - 60
  • [22] Magnetic interaction effects in Fe3O4@CoFe2O4 core/shell nanoparticles
    Do, Hung Manh
    Le, Thi Hong Phong
    Tran, Dang Thanh
    Nguyen, Thi Ngoc Anh
    Skorvanek, Ivan
    Kovac, Jozef
    Svec Jr, Peter
    Phan, Manh Huong
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2024, 9 (01):
  • [23] Magnetic Properties and Mossbauer Spectroscopy of Fe3O4/CoFe2O4 Nanorods
    Hahsler, Martin
    Landers, Joachim
    Nowack, Tim
    Salamon, Soma
    Zimmermann, Michael
    HeiBler, Stefan
    Wende, Heiko
    Behrens, Silke
    INORGANIC CHEMISTRY, 2020, 59 (06) : 3677 - 3685
  • [24] Contrasting shell thickness-dependent magnetic behaviors of CoFe2O4@Fe3O4 and Fe3O4@CoFe2O4 core/shell nanoparticles
    Phong, L. T. H.
    Manh, Do Hung
    Thanh, Tran Dang
    Bach, T. N.
    Ky, V. H.
    Skorvanek, Ivan
    Kovac, Jozef
    Svec, Peter
    Phan, The-Long
    Phan, Manh Huong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [25] Boron Nitride Nanosheets Functionalized with Fe3O4 and CoFe2O4 Magnetic Nanoparticles for Nanofiltration Applications
    Dee, Garret
    O'Donoghue, Olivia
    Rafferty, Aran
    Gannon, Lee
    McGuinness, Cormac
    Gun'ko, Yurii K.
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 12526 - 12536
  • [26] Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles
    Almeida, Trevor P.
    Moro, Fabrizio
    Fay, Michael W.
    Zhu, Yanqiu
    Brown, Paul D.
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (05)
  • [27] Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles
    Trevor P. Almeida
    Fabrizio Moro
    Michael W. Fay
    Yanqiu Zhu
    Paul D. Brown
    Journal of Nanoparticle Research, 2014, 16
  • [28] Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles
    Akbari, Hossein
    Zeynali, Hossein
    Bakhshayeshi, Ali
    PHYSICS LETTERS A, 2016, 380 (7-8) : 927 - 936
  • [29] Pressure-induced magnetic transition in Fe3O4 and CoFe2O4 spinels
    Subias, G.
    Cuartero, V.
    Garcia, J.
    Blasco, J.
    Mathon, O.
    Pascarelli, S.
    14TH INTERNATIONAL CONFERENCE ON X-RAY ABSORPTION FINE STRUCTURE (XAFS14), PROCEEDINGS, 2009, 190
  • [30] Magnetic properties of hard (CoFe2O4)-soft (Fe3O4) composite ceramics
    Yi, Fan
    CERAMICS INTERNATIONAL, 2014, 40 (06) : 7837 - 7840