Grinding force model for longitudinal-torsional ultrasonic-assisted face grinding of ceramic matrix composites

被引:11
|
作者
Qiao, Guochao [1 ]
Cheng, Zhao [1 ]
Zheng, Wei [2 ]
Yi, Shicheng [1 ]
Zhang, Fujiang [3 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
[2] Beijing Inst Astronaut Syst Engn, Beijing, Peoples R China
[3] Yongye Technol Tangshan Co Ltd, Tangshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal-torsional; Ultrasonic; Grinding; Grinding force model; Ceramic matrix composites; PLASTIC INDENTATION DAMAGE; MATERIAL REMOVAL BEHAVIOR; VIBRATION; MECHANISM; FEASIBILITY; FRACTURE;
D O I
10.1007/s00170-022-09174-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To provide technical support for efficient and low-damage machining of ceramic matrix composites, a method to model the grinding force for longitudinal-torsional ultrasound-assisted face grinding (LTUFG) was investigated. Based on the kinematic analysis, the influences of longitudinal and torsional vibration on the effective cutting time were investigated, respectively. The equations of the average grinding force of a single grinding grain were obtained on the basis of the impulse principle and indentation fracture theory. The number of effective abrasive grains was obtained by using image identification and statistical analysis methods. Subsequently, a grinding force model was developed, and a correction function was established to correct the model by using statistical regression theory. Finally, an orthogonal test was designed to validate the grinding force model. The results show that the maximum prediction error of the model is 18%, and the model can accurately reveal the importance of the influence of each parameter on the grinding force. The results of this work can provide theoretical support for the screening of machining parameters and scheme optimization in actual production, which has significant practical value.
引用
收藏
页码:7721 / 7733
页数:13
相关论文
共 50 条
  • [31] Modeling of grinding force in longitudinal ultrasonic vibration-assisted grinding alumina ceramics and experimental evaluation
    Zhao, Mingli
    Xue, Boxi
    Li, Bohan
    Zhu, Junming
    WenbinSong
    Nie, Lixin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (5-6) : 2325 - 2339
  • [32] Influences of dressing lead on surface roughness of ultrasonic-assisted grinding
    Haifeng Chen
    Jinyuan Tang
    Xiejun Lang
    Yulin Huang
    Yuhui He
    The International Journal of Advanced Manufacturing Technology, 2014, 71 : 2011 - 2015
  • [33] Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling
    Qin, Shaoqing
    Zhu, Lida
    Wiercigroch, Marian
    Ren, Tianyu
    Hao, Yanpeng
    Ning, Jinsheng
    Zhao, Jinze
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 227
  • [34] Nanofluid minimum quantity lubrication assisted grinding force model considering anisotropy of SiCf/SiC ceramic matrix composites
    Zhang, Qi
    Wang, Ben
    Song, Chang
    Wang, Hao
    Zhu, Tianlong
    COMPOSITE STRUCTURES, 2025, 351
  • [35] Study on contact performance of ultrasonic-assisted grinding surface
    Wen Yuqin
    Tang Jinyuan
    Zhou Wei
    Zhu Caichao
    ULTRASONICS, 2019, 91 : 193 - 200
  • [36] High-performance grinding of ceramic matrix composites
    Yin, Jingfei
    Xu, Jiuhua
    Su, Honghua
    NANOTECHNOLOGY AND PRECISION ENGINEERING, 2024, 7 (03)
  • [37] Study on removal mechanism and surface quality of SiCf/SiC composites by longitudinal torsional ultrasonic vibration-assisted grinding
    Sun, Qixuan
    Ren, Kun
    An, Qinglong
    Tao, Dingyi
    Yu, Mengqiu
    Miao, Qing
    Zhang, Ming
    Li, Hua
    Yin, Zhen
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 91 : 47 - 58
  • [38] An investigation on surface functional parameters in ultrasonic-assisted grinding of soft steel
    Chen, Haifeng
    Tang, Jinyuan
    Shao, Wen
    Zhao, Bo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 97 (5-8) : 2697 - 2702
  • [39] Grinding Force Modeling of Two-Dimensional Ultrasonic Vibration Assisted Grinding
    Ma, Lian-Jie
    Sun, Li-Ye
    Qiu, Zhe
    Li, Hong-Shuang
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (08): : 1135 - 1142and1192
  • [40] Grinding a hard-to-grind materials with ultrasonic-assisted fluid
    Ishimatsu, Jun
    Iwaita, Atsushi
    Isobe, Hiromi
    International Journal of Automation Technology, 2014, 8 (03) : 478 - 483