A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves

被引:159
作者
Charthad, Jayant [1 ]
Chang, Ting Chia [1 ]
Liu, Zhaokai [2 ,3 ]
Sawaby, Ahmed [1 ]
Weber, Marcus J. [1 ]
Baker, Sam [4 ]
Gore, Felicity [5 ]
Felt, Stephen A. [4 ]
Arbabian, Amin [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Stanford Univ, Dept Comparat Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Electrical stimulation; electroceuticals; electrode characterization; EMG; high compliance voltage; implantable medical devices (IMD); optogenetics; peripheral nerve; sciatic nerve; ELECTRODE-STIMULATOR; NEURAL STIMULATION; POWER TRANSFER; ULTRASOUND; EFFICIENT; SYSTEM; RECRUITMENT; CIRCUITS; DESIGN; BRAIN;
D O I
10.1109/TBCAS.2018.2799623
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A wireless electrical stimulation implant for peripheral nerves, achieving > 10x improvement over state of the art in the depth/volume figure of merit, is presented. The fully integrated implant measures just 2 mm x 3 mm x 6.5 mm (39 mm(3), 78 mg), and operates at a large depth of 10.5 cm in a tissue phantom. The implant is powered using ultrasound and includes a miniaturized piezoelectric receiver (piezo), an IC designed in 180 nm HV BCD process, an off-chip energy storage capacitor, and platinum stimulation electrodes. The package also includes an optional blue light-emitting diode for potential applications in optogenetic stimulation in the future. A system-level design strategy for complete operation of the implant during the charging transient of the storage capacitor, as well as a unique downlink command/data transfer protocol, is presented. The implant enables externally programmable current-controlled stimulation of peripheral nerves, with a wide range of stimulation parameters, both for electrical (22 to 5000 mu A amplitude, similar to 14 to 470 mu s pulse-width, 0 to 60 Hz repetition rate) and optical (up to 23 mW/mm(2) optical intensity) stimulation. Additionally, the implant achieves 15 V compliance voltage for chronic applications. Full integration of the implant components, end-to-end in vitro system characterizations, and results for the electrical stimulation of a sciatic nerve, demonstrate the feasibility and efficacy of the proposed stimulator for peripheral nerves.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 71 条
[1]   Design Methodology for Maximum Power Transmission, Optimal BER-SNR and Data Rate in Biomedical Implants [J].
Al-Kalbani, Ahmed I. ;
Yuce, Mehmet R. ;
Redoute, Jean-Michel .
IEEE COMMUNICATIONS LETTERS, 2013, 17 (10) :1897-1900
[2]   An Energy-Efficient, Adiabatic Electrode Stimulator With Inductive Energy Recycling and Feedback Current Regulation [J].
Arfin, Scott K. ;
Sarpeshkar, Rahul .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (01) :1-14
[3]   Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications [J].
Ball, Jordan P. ;
Mound, Brittnee A. ;
Nino, Juan C. ;
Allen, Josephine B. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (07) :2089-2095
[4]   Integrated Circuits for Volumetric Ultrasound Imaging With 2-D CMUT Arrays [J].
Bhuyan, Anshuman ;
Choe, Jung Woo ;
Lee, Byung Chul ;
Wygant, Ira O. ;
Nikoozadeh, Amin ;
Oralkan, Omer ;
Khuri-Yakub, Butrus T. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2013, 7 (06) :796-804
[5]  
Yeager D., 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers, DOI [10.1109/JSSC.2014.2384736, 10.1109/VLSIC.2014.6858430]
[6]   Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway [J].
Bonaz, B. ;
Picq, C. ;
Sinniger, V. ;
Mayol, J. F. ;
Clarencon, D. .
NEUROGASTROENTEROLOGY AND MOTILITY, 2013, 25 (03) :208-221
[7]   Electronic enhancement of tear secretion [J].
Brinton, Mark ;
Chung, Jae Lim ;
Kossler, Andrea ;
Kook, Koung Hoon ;
Loudin, Jim ;
Franke, Manfred ;
Palanker, Daniel .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (01)
[8]   A High Dynamic-Range Neural Recording Chopper Amplifier for Simultaneous Neural Recording and Stimulation [J].
Chandrakumar, Hariprasad ;
Markovic, Dejan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (03) :645-656
[9]  
Chang TC, 2017, ISSCC DIG TECH PAP I, P460, DOI 10.1109/ISSCC.2017.7870460
[10]   Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads [J].
Chang, Ting Chia ;
Weber, Marcus J. ;
Wang, Max L. ;
Charthad, Jayant ;
Khuri-Yakub, Butrus T. ;
Arbabian, Amin .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2016, 63 (10) :1554-1562