Hydrothermal synthesis of shape-controlled SnO as anode material for Li-ion batteries

被引:15
|
作者
Cheng, Yayi [1 ]
Huang, Jianfeng [1 ]
Li, Jiayin [1 ]
Cao, Liyun [1 ]
Qi, Hui [1 ]
机构
[1] Shanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
来源
MICRO & NANO LETTERS | 2018年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
tin compounds; secondary cells; electrochemical electrodes; particle size; materials preparation; SnO; SnO anode material; electrochemical performances; structural stability; crystallinity; shell liked SnO; block SnO; rate capability; cycling capability; crossed SnO; lithium-ion batteries; hydrothermal reaction; surfactant; SnO structures; stannous oxide materials; shape-controlled SnO; ELECTROCHEMICAL PERFORMANCE; IMPROVED CAPACITANCE; CARBON NANOTUBES; CATHODE MATERIAL; LITHIUM; NANOSHEETS; GROWTH; NANOPARTICLES; MICROSPHERES; COMPOSITES;
D O I
10.1049/mnl.2017.0550
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high purity of stannous oxide (SnO) materials with various structures were synthesised using a facile hydrothermal method. Different SnO structures with cross, block, and shell were obtained by controlling pH value and surfactant during the hydrothermal reaction. As anode for lithium-ion batteries (LIBs), the crossed SnO displays superior cycling and rate capability in comparison with the block and shell liked SnO. The difference could be attributed to the special morphology of crossed SnO that shows small particle size, high crystallinity, and good structural stability. All the results suggest that controlling structure is an effective way to improve the electrochemical performances of SnO anode material in LIBs.
引用
收藏
页码:257 / 260
页数:4
相关论文
共 50 条
  • [41] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [42] Theoretical prediction of honeycomb carbon as Li-ion batteries anode material
    Junping Hu
    Xiaohang Zhang
    The European Physical Journal B, 2018, 91
  • [43] Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries
    Li, De
    Dai, Pengcheng
    Chen, Yong
    Peng, Ruwen
    Sun, Yang
    Zhou, Haoshen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (32): : 18231 - 18236
  • [44] Novel spherical microporous carbon as anode material for Li-ion batteries
    Wang, Q
    Li, H
    Chen, LQ
    Huang, XJ
    SOLID STATE IONICS, 2002, 152 : 43 - 50
  • [45] Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries
    Tesfaye, Alexander T.
    Gonzalez, Roberto
    Coffer, Jeffery L.
    Djenizian, Thierry
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20495 - 20498
  • [46] Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries
    Xia, Hua-Rong
    Sun, Wen-Tao
    Peng, Lian-Mao
    CHEMICAL COMMUNICATIONS, 2015, 51 (72) : 13787 - 13790
  • [47] One-Step In situ Synthesis of SnO2/Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries
    Liang, Junfei
    Wei, Wei
    Zhong, Da
    Yang, Qinglin
    Li, Lidong
    Guo, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) : 454 - 459
  • [48] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Man-Xia Huang
    Yan-Hui Sun
    Dong-Cai Guan
    Jun-Min Nan
    Yue-Peng Cai
    Ionics, 2019, 25 : 5745 - 5757
  • [49] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Huang, Man-Xia
    Sun, Yan-Hui
    Guan, Dong-Cai
    Nan, Jun-Min
    Cai, Yue-Peng
    IONICS, 2019, 25 (12) : 5745 - 5757
  • [50] Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries
    Xiao, Ying
    Hao, Di
    Chen, Huixin
    Gong, Zhengliang
    Yang, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (05) : 1681 - 1687