Hydrothermal synthesis of shape-controlled SnO as anode material for Li-ion batteries

被引:15
|
作者
Cheng, Yayi [1 ]
Huang, Jianfeng [1 ]
Li, Jiayin [1 ]
Cao, Liyun [1 ]
Qi, Hui [1 ]
机构
[1] Shanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
来源
MICRO & NANO LETTERS | 2018年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
tin compounds; secondary cells; electrochemical electrodes; particle size; materials preparation; SnO; SnO anode material; electrochemical performances; structural stability; crystallinity; shell liked SnO; block SnO; rate capability; cycling capability; crossed SnO; lithium-ion batteries; hydrothermal reaction; surfactant; SnO structures; stannous oxide materials; shape-controlled SnO; ELECTROCHEMICAL PERFORMANCE; IMPROVED CAPACITANCE; CARBON NANOTUBES; CATHODE MATERIAL; LITHIUM; NANOSHEETS; GROWTH; NANOPARTICLES; MICROSPHERES; COMPOSITES;
D O I
10.1049/mnl.2017.0550
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high purity of stannous oxide (SnO) materials with various structures were synthesised using a facile hydrothermal method. Different SnO structures with cross, block, and shell were obtained by controlling pH value and surfactant during the hydrothermal reaction. As anode for lithium-ion batteries (LIBs), the crossed SnO displays superior cycling and rate capability in comparison with the block and shell liked SnO. The difference could be attributed to the special morphology of crossed SnO that shows small particle size, high crystallinity, and good structural stability. All the results suggest that controlling structure is an effective way to improve the electrochemical performances of SnO anode material in LIBs.
引用
收藏
页码:257 / 260
页数:4
相关论文
共 50 条
  • [1] Optimization of Li2SnO3 Synthesis for Anode Material Application in Li-ion Batteries
    Musa, N.
    Woo, H. J.
    Teo, L. P.
    Arof, A. K.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (04) : 5169 - 5177
  • [2] Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries
    Wang, G.
    Gao, X. P.
    Shen, P. W.
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 719 - 723
  • [3] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [4] Nanoribbons of SnO2 as a high performance Li-ion battery anode material
    Faramarzi, Mojtaba Sadati
    Abnavi, Amin
    Ghasemi, Shahnaz
    Sanaee, Zeinab
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [5] Synthesis of Nanostructured SnO2/C Microfibers with Improved Performances as Anode Material for Li-Ion Batteries
    Yin, Ya-Xia
    Xin, Sen
    Wan, Li-Jun
    Li, Cong-Ju
    Guo, Yu-Guo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 2581 - 2585
  • [6] Progress on Li3VO4 as a Promising Anode Material for Li-ion Batteries
    Mo, Jun
    Zhang, Xiumei
    Liu, Junjie
    Yu, Jingang
    Wang, Zhian
    Liu, Zaichun
    Yuan, Xinhai
    Zhou, Chunjiao
    Li, Ruilian
    Wu, Xiongwei
    Wu, Yuping
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (12) : 1789 - 1796
  • [7] High-performance silicon from quartz product waste as an anode material for Li-ion batteries
    Pan, Wenhao
    Cai, Xiaolan
    Yang, Changjiang
    Zhou, Lei
    CERAMICS INTERNATIONAL, 2022, 48 (13) : 19412 - 19423
  • [8] Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries
    Mei, Riguo
    Song, Xiaorui
    Hu, Yan
    Yang, Yanfeng
    Zhang, Jingjie
    ELECTROCHIMICA ACTA, 2015, 153 : 540 - 545
  • [9] One-Step In situ Synthesis of SnO2/Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries
    Liang, Junfei
    Wei, Wei
    Zhong, Da
    Yang, Qinglin
    Li, Lidong
    Guo, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) : 454 - 459
  • [10] Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries
    Cho, Jung Sang
    Hong, Young Jun
    Kang, Yun Chan
    ACS NANO, 2015, 9 (04) : 4026 - 4035