Adaptive finite element modeling of phase-field fracture driven by hydrogen embrittlement

被引:29
|
作者
Dinachandra, Moirangthem [1 ]
Alankar, Alankar [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, Maharashtra, India
关键词
Adaptive FEM; Hydrogen embrittlement; Phase-field fracture; Brittle fracture; Crack propagation; BRITTLE-FRACTURE; CRACK-PROPAGATION; FORMULATION; SIMULATION; FAILURE; DEGRADATION; FRAMEWORK; BALANCE; SURFACE; GROWTH;
D O I
10.1016/j.cma.2021.114509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of hydrogen on crack propagation has been studied extensively using various numerical algorithms. Recently, phase-field models have been developed that can predict crack propagation with very good resemblance of the crack paths with the experimental results. Solving the coupled equations of hydrogen transport, mechanical equilibrium and phase-field models is computationally expensive requiring a large number of time steps and high spatial resolution. Often, the spatial resolution is achieved a priori in known regions where the cracks may propagate. This leads to a large number of degrees of freedom to be solved for a large number of time steps for the coupled equations in simulating hydrogen-assisted cracking. In the present work, an adaptive refinement scheme is proposed that will remove the burden of very high uniform spatial resolution in non crack regions eventually leading to fewer degrees of freedom and hence decreases the computational cost. Several case studies are considered and the efficacy of the proposed method is demonstrated.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Adaptive phase-field modeling of fracture propagation in bi-layered materials
    Khan, Salman
    Muixi, Alba
    Annavarapu, Chandrasekhar
    Rodriguez-Ferran, Antonio
    ENGINEERING FRACTURE MECHANICS, 2023, 292
  • [32] Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
    Jaccon, Adrien
    Prabel, Benoit
    Molnar, Gergely
    Bluthe, Joffrey
    Gravouil, Anthony
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 224
  • [33] Global-local adaptive meshing method for phase-field fracture modeling
    Cheng, Fengyu
    Yu, Hao
    Wang, Quan
    Huang, Hanwei
    Xu, Wenlong
    Wu, Hengan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 438
  • [34] Phase-field modeling of droplet movement using the discontinuous finite element method
    Chen, H.
    Shu, Y.
    Li, B. Q.
    Mohanty, P.
    Sengupta, S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 8, PTS A AND B: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, 2008, : 1613 - 1620
  • [35] A phase-field approach to model fracture of arterial walls: Theory and finite element analysis
    Gueltekin, Osman
    Dal, Husnu
    Holzapfel, Gerhard A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 542 - 566
  • [36] Asymptotic homogenization of phase-field fracture model: An efficient multiscale finite element framework for anisotropic fracture
    Ma, Pu-Song
    Liu, Xing-Cheng
    Luo, Xue-Ling
    Li, Shaofan
    Zhang, Lu-Wen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (13)
  • [37] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [38] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [39] Phase-Field Modeling of Fracture in Ferroelectric Materials
    Amir Abdollahi
    Irene Arias
    Archives of Computational Methods in Engineering, 2015, 22 : 153 - 181
  • [40] Multiscale Phase-Field Modeling of Fracture in Nanostructures
    Jahanshahi, Mohsen
    Khoei, Amir Reza
    Asadollahzadeh, Niloofar
    Aldakheel, Fadi
    JOURNAL OF MULTISCALE MODELLING, 2023, 14 (04)