Elimination of parameters in the polynomial hierarchy

被引:4
|
作者
Koiran, P [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, LIP, F-69364 Lyon 07, France
关键词
D O I
10.1016/S0304-3975(98)00261-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Blum, Cucker, Shub and Smale have shown that the problem "P =NP?" has the same answer in all algebraically closed fields of characteristic 0. We generalize this result to the polynomial hierarchy: if it collapses over an algebraically closed field of characteristic 0, then it must collapse at the same level over all algebraically closed fields of characteristic 0. The main ingredient of their proof was a theorem on the elimination of parameters, which we also extend to the polynomial hierarchy. Similar but somewhat weaker results hold in positive characteristic. The present paper updates a technical report (LIP Research Report 97-37) with the same title, and in particular includes new results on interactive protocols and boolean parts. (C) 1999-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 50 条
  • [1] BPP AND THE POLYNOMIAL HIERARCHY
    LAUTEMANN, C
    INFORMATION PROCESSING LETTERS, 1983, 17 (04) : 215 - 217
  • [2] A Hierarchy of Polynomial Kernels
    Witteveen, Jouke
    Bottesch, Ralph
    Torenvliet, Leen
    THEORY AND PRACTICE OF COMPUTER SCIENCE, SOFSEM 2019, 2019, 11376 : 504 - 518
  • [3] EXTENSION OF POLYNOMIAL HIERARCHY
    SIMON, J
    JOURNAL OF SYMBOLIC LOGIC, 1978, 43 (02) : 361 - 362
  • [4] BQP and the Polynomial Hierarchy
    Aaronson, Scott
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 141 - 150
  • [5] Refining the polynomial hierarchy
    Selivanov V.L.
    Algebra and Logic, 1999, 38 (4) : 248 - 258
  • [6] The Boolean hierarchy and the polynomial hierarchy: A closer connection
    Chang, R
    Kadin, J
    SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 340 - 354
  • [7] GEOMETRIC OPTIMIZATION AND THE POLYNOMIAL HIERARCHY
    BAJAJ, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 206 : 176 - 195
  • [8] REAL ADDITION AND THE POLYNOMIAL HIERARCHY
    SONTAG, ED
    INFORMATION PROCESSING LETTERS, 1985, 20 (03) : 115 - 120
  • [9] Query order in the polynomial hierarchy
    Hemaspaandra, E
    Hemaspaandra, LA
    Hempel, H
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 1997, 1279 : 222 - 232
  • [10] Communicating ASP and the Polynomial Hierarchy
    Bauters, Kim
    Schockaert, Steven
    Vermeir, Dirk
    De Cock, Martine
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, 2011, 6645 : 67 - 79