Modeling polarons in density functional theory: lessons learned from TiO2

被引:13
作者
Reticcioli, Michele [1 ]
Diebold, Ulrike [2 ]
Franchini, Cesare [1 ,3 ]
机构
[1] Univ Vienna, Fac Phys, Ctr Computat Mat Sci, Vienna, Austria
[2] Tech Univ Wien, Inst Appl Phys, Vienna, Austria
[3] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
基金
奥地利科学基金会;
关键词
surface science; polarons; DFT; catalysis; TOTAL-ENERGY CALCULATIONS; EXCESS ELECTRONS; SURFACE SCIENCE; REDUCED RUTILE; POINT-DEFECTS; CO; ANATASE; SEMICONDUCTORS; ADSORPTION; CRYSTAL;
D O I
10.1088/1361-648X/ac58d7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Density functional theory (DFT) is nowadays one of the most broadly used and successful techniques to study the properties of polarons and their effects in materials. Here, we systematically analyze the aspects of the theoretical calculations that are crucial to obtain reliable predictions in agreement with the experimental observations. We focus on rutile TiO2, a prototypical polaronic compound, and compare the formation of polarons on the (110) surface and subsurface atomic layers. As expected, the parameter U used to correct the electronic correlation in the DFT + U formalism affects the resulting charge localization, local structural distortions and electronic properties of polarons. Moreover, the polaron localization can be driven to different sites by strain: due to different local environments, surface and subsurface polarons show different responses to the applied strain, with impact on the relative energy stability. An accurate description of the properties of polarons is key to understand their impact on complex phenomena and applications: as an example, we show the effects of lattice strain on the interaction between polarons and CO adsorbates.
引用
收藏
页数:8
相关论文
共 78 条
  • [1] Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy
    Adachi, Yuuki
    Sugawara, Yasuhiro
    Li, Yan Jun
    [J]. NANO RESEARCH, 2022, 15 (03) : 1909 - 1915
  • [2] Alexandrov AS., 2010, ADV POLARON PHYS, V159, P171
  • [3] Polarons in crystalline and non-crystalline materials
    Austin, IG
    Mott, NF
    [J]. ADVANCES IN PHYSICS, 2001, 50 (07) : 757 - 812
  • [4] OPTICAL ABSORPTION BY POLARONS IN RUTILE (TIO2) SINGLE CRYSTALS
    BOGOMOLOV, VN
    MIRLIN, DN
    [J]. PHYSICA STATUS SOLIDI, 1968, 27 (01): : 443 - +
  • [5] Electronic structure of an isolated oxygen vacancy at the TiO2(110) surface
    Bredow, T
    Pacchioni, G
    [J]. CHEMICAL PHYSICS LETTERS, 2002, 355 (5-6) : 417 - 423
  • [6] Scenarios of polaron-involved molecular adsorption on reduced TiO2(110) surfaces
    Cao, Yunjun
    Yu, Min
    Qi, Shandong
    Huang, Shiming
    Wang, Tingting
    Xu, Mingchun
    Hu, Shujun
    Yan, Shishen
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Car R., 2015, SPRINGER SERIES SURF
  • [8] Ultrafast Formation of Small Polarons and the Optical Gap in CeO2
    Cresi, Jacopo Stefano Pelli
    Di Mario, Lorenzo
    Catone, Daniele
    Martelli, Faustino
    Paladini, Alessandra
    Turchini, Stefano
    D'Addato, Sergio
    Luches, Paola
    O'Keeffe, Patrick
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (14) : 5686 - 5691
  • [9] Polaron in TiO2 from First-Principles: A Review
    De Lile, Jeffrey Roshan
    Bahadoran, Ashkan
    Zhou, Su
    Zhang, Jiujun
    [J]. ADVANCED THEORY AND SIMULATIONS, 2022, 5 (02)
  • [10] Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO2
    Deak, Peter
    Aradi, Balint
    Frauenheim, Thomas
    [J]. PHYSICAL REVIEW B, 2012, 86 (19)