Experimental Optimization with the Emphasis on Techno-Economic Analysis of Production and Purification of High Value-Added Bioethanol from Sustainable Corn Stover

被引:12
|
作者
AbdElhafez, Sara E. [1 ]
Taha, Tarek [2 ]
Mansy, Ahmed E. [3 ]
El-Desouky, Eman [4 ]
Abu-Saied, Mohamed A. [5 ]
Eltaher, Khloud [4 ]
Hamdy, Ali [2 ]
El Fawal, Gomaa [5 ]
Gamal, Amr [6 ]
Hashim, Aly M. [7 ]
Elgharbawy, Abdallah S. [8 ,9 ]
Abd El-Latif, Mona M. [1 ]
Hamad, Hesham [1 ,10 ]
Ali, Rehab M. [1 ]
机构
[1] City Sci Res & Technol Applicat SRTA City, Fabricat Technol Res Dept, Adv Technol & New Mat Res Inst ATNMRI, Alexandria 21934, Egypt
[2] City Sci Res & Technol Applicat SRTA City, Environm Biotechnol Dept, Genet Engn & Biotechnol Res Inst GEBRI, Alexandria 21934, Egypt
[3] City Sci Res & Technol Applicat SRTA City, Environm & Nat Mat Res Inst ENMRI, Alexandria 21934, Egypt
[4] Alexandria Univ, Fac Sci, Chem Dept, Alexandria 21321, Egypt
[5] City Sci Res & Technol Applicat SRTA City, Polymer Mat Res Dept, Adv Technol & New Mat Res Inst ATNMRI, Alexandria 21934, Egypt
[6] Alexandria Univ, Fac Sci, Phys Dept, Alexandria 21568, Egypt
[7] City Sci Res & Technol Applicat SRTA City, Cent Lab, Alexandria 21934, Egypt
[8] Alexandria Univ, Inst Grad Studies & Res IGSR, Mat Sci Dept, Alexandria 21526, Egypt
[9] Egyptian Ethylene & Derivat Co ETHYDCO, Alexandria 23511, Egypt
[10] Univ Warsaw, Fac Chem, Pasteur 1, PL-02093 Warsaw, Poland
关键词
corn stover; pretreatment; maleic acid; delignification; enzymatic degradation; fermentation; membranes; pervaporation; bioethanol; techno-economic analysis; LIGNOCELLULOSIC BIOMASS; MICROWAVE PYROLYSIS; ACID PRETREATMENT; DELIGNIFICATION; PERVAPORATION; SEPARATION; ETHANOL; MIXTURE; WASTE; STRAW;
D O I
10.3390/en15176131
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bioethanol-derived biomass is a green sustainable source of energy that is highly recommended as an efficient alternative to the replacement of fossil fuels. However, this type of bioethanol production is always expensive with very low bioethanol concentration. Therefore, this work aims to represent a facile and green approach for bioethanol production with high concentration and purity as well as reasonable cost from corn stover (CS). The goal of this study is to characterize CS and its treated samples with maleic acid (CSM) using various characterization analyses, such as proximate and ultimate analysis, HHV, TGA, FTIR, SEM, and CHNS. The bioethanol production stages: Pretreatment, enzymatic degradation, fermentation, and finally bioethanol separation and purification via the pervaporation process, which have been investigated and optimized are associated with the economic analysis. The optimum operating condition of the pretreatment process was 2% maleic acid, 1:20 solid-to-liquid ratio at 45 psi, 120 degrees C, and 1 h of operation in the autoclave. This process contributes to 53 and 45% lignin and hemicellulose removal, 98% cellulose recovery, and a glucose yield of 741 mg/dL. The yeast isolate succeeded in the production of 1230 mg/dL of bioethanol. This isolated yeast strain was close to Pichia nakasei with a similarity of 98%, and its amplified 18S rRNA gene sequence was deposited in GenBank with the accession number MZ675535. Poly (MMA-co-MA) membrane was synthesized, characterized, and its efficiency for increasing the bioethanol concentration was evaluated using the integrated pervaporation technique. The techno-economic analysis is presented in detail to evaluate the process profitability, which achieves a considerable profit for the whole duration of the project without any losses as it reaches a net profit of USD 1 million in 2023, reaching USD 2.1 million in 2047 for a company with a capacity of 32 thousand tons per year. The sequential strategy offers a promising approach for efficient bioethanol production under mild and environmentally friendly conditions that enable its implication industrially.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Techno-Economic Analysis of Cellulosic Butanol Production from Corn Stover through Acetone-Butanol-Ethanol Fermentation
    Baral, Nawa Raj
    Shah, Ajay
    ENERGY & FUELS, 2016, 30 (07) : 5779 - 5790
  • [32] Kraft lignin fast (catalytic) pyrolysis for the production of high value-added chemicals (HVACs): A techno-economic screening of valorization pathways
    Iakovou, Georgios
    Ipsakis, Dimitris
    Triantafyllidis, Konstantinos S.
    ENVIRONMENTAL RESEARCH, 2024, 248
  • [33] Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis
    Sharma, Pooja
    Parakh, Sheetal Kishor
    Tsui, To Hung
    Bano, Ambreen
    Singh, Surendra Pratap
    Singh, Vijay Pratap
    Lam, Su Shiung
    Nadda, Ashok Kumar
    Tong, Yen Wah
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (06) : 1040 - 1060
  • [34] Techno-Economic Analysis of an Integrated Bio-Refinery for the Production of Biofuels and Value-Added Chemicals from Oil Palm Empty Fruit Bunches
    Lim, Kean Long
    Wong, Wai Yin
    Rubinsin, Nowilin James
    Loh, Soh Kheang
    Lim, Mook Tzeng
    PROCESSES, 2022, 10 (10)
  • [35] Simulation Tool for the Techno-Economic Assessment of the Integrated Production of Polyhydroxyalkanoates as Value-Added Byproducts of a Wastewater Treatment Plant
    Pozo-Morales, Laura
    Martinez, Antonio Rosales
    Baquerizo, Enrique
    Agulla, German del Valle
    PROCESSES, 2025, 13 (02)
  • [36] Techno-economic Analysis of Bioethanol Production from Palm Oil Empty Fruit bunch
    Srinophakun, Thongchai Rohitatisha
    Suwajittanom, Pattamaporn
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (08) : 1787 - 1795
  • [37] Lowering greenhouse gas (GHG) emissions: techno-economic analysis of biomass conversion to biofuels and value-added chemicals
    Sharma, Anita
    Jakhete, Akshay
    Sharma, Abhishek
    Joshi, Jyeshtharaj B.
    Pareek, Vishnu
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2019, 9 (03): : 454 - 473
  • [38] Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals
    Khan, M. A.
    Al-Attas, Tareq A.
    Yasri, Nael G.
    Zhao, Heng
    Larter, Stephen
    Hu, Jinguang
    Kibria, Md Golam
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) : 5568 - 5577
  • [39] Techno-economic analysis of processes for biodiesel production with integrated co-production of higher added value products from glycerol
    Al-Saadi, Luma Sh.
    Eze, Valentine C.
    Harvey, Adam P.
    BIOFUELS-UK, 2022, 13 (04): : 489 - 496
  • [40] Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach
    Quintero, Julian A.
    Moncada, Jonathan
    Cardona, Carlos A.
    BIORESOURCE TECHNOLOGY, 2013, 139 : 300 - 307